H. A. Abbass, J. Tang, R. Amin, M. Ellejmi, K. et al., Augmented Cognition using Real-time EEG-based Adaptive Strategies for Air Traffic Control, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol.4, issue.1, pp.230-234, 1177.
DOI : 10.1177/1541931214581048

F. Aloise, P. Aricò, F. Schettini, A. Riccio, S. Salinari et al., A covert attention P300-based brain???computer interface: Geospell, Ergonomics, vol.24, issue.5, pp.538-551, 2012.
DOI : 10.1016/S1388-2457(02)00057-3

F. Aloise, F. Schettini, P. Aricò, L. Bianchi, A. Riccio et al., Advanced brain computer interface for communication and control, Proceedings of the International Conference on Advanced Visual Interfaces, AVI '10, pp.399-400, 2010.
DOI : 10.1145/1842993.1843076

P. Aricò, F. Aloise, F. Schettini, A. Riccio, S. Salinari et al., Geospell: an alternative p300-based speller interface towards no eye gaze require, Int. J. Bioelectromagn, vol.13, pp.152-153, 2011.

P. Aricò, G. Borghini, D. Flumeri, G. Babiloni, and F. , Metodo Per Stimare Uno Stato Mentale, Particolare Un Carico Di Lavoro, e Relativo Apparato (A Method for the Estimation of Mental State Particular of the Mental Workload and its Device). P1108IT00, 2015.

P. Aricò, G. Borghini, D. Flumeri, G. Colosimo, A. Graziani et al., Reliability over time of EEG-based mental workload evaluation during Air Traffic Management (ATM) tasks, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.7242-7245, 2015.
DOI : 10.1109/EMBC.2015.7320063

P. Aricò, G. Borghini, D. Flumeri, G. Colosimo, A. Pozzi et al., A passive brain???computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks, Prog. Brain Res, vol.228, pp.295-328, 2016.
DOI : 10.1016/bs.pbr.2016.04.021

P. Aricò, G. Borghini, I. Graziani, F. Bianchini, F. Cincotti et al., A brain computer interface system for the online evaluation of ATCs' workload. Ital, J. Aerosp. Med, 2013.

P. Aricò, G. Borghini, I. Graziani, J. P. Imbert, G. Granger et al., ATCO: neurophysiological analysis of the training and of the workload, Ital. J. Aerosp. Med, vol.12, pp.18-34, 2015.

P. Aricò, G. Borghini, I. Graziani, F. Taya, Y. Sun et al., Towards a multimodal bioelectrical framework for the online mental workload evaluation, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014.
DOI : 10.1109/EMBC.2014.6944254

F. Babiloni, F. Carducci, F. Cincotti, D. Gratta, C. Roberti et al., Integration of high resolution EEG and functional magnetic resonance in the study of human movement-related potentials, Methods Inf. Med, vol.39, pp.179-182, 2000.

D. Bamber, The area above the ordinal dominance graph and the area below the receiver operating characteristic graph, Journal of Mathematical Psychology, vol.12, issue.4, pp.387-415, 1975.
DOI : 10.1016/0022-2496(75)90001-2

C. Berka, D. J. Levendowski, C. K. Ramsey, G. Davis, M. N. Lumicao et al., Evaluation of an EEG workload model in an Aegis simulation environment, Biomonitoring for Physiological and Cognitive Performance during Military Operations, pp.90-99, 2005.
DOI : 10.1117/12.598555

B. Blankertz, M. Tangermann, C. Vidaurre, S. Fazli, C. Sannelli et al., The Berlin Brain???Computer Interface: Non-Medical Uses of BCI Technology, Frontiers in Neuroscience, vol.4, 2010.
DOI : 10.3389/fnins.2010.00198

G. Borghini, P. Arico, L. Astolfi, J. Toppi, F. Cincotti et al., Frontal EEG theta changes assess the training improvements of novices in flight simulation tasks, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.6619-6622, 2013.
DOI : 10.1109/EMBC.2013.6611073

G. Borghini, P. Aricò, D. Flumeri, G. Salinari, S. Colosimo et al., Avionic technology testing by using a cognitive neurometric index: A study with professional helicopter pilots, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.6182-6185, 2015.
DOI : 10.1109/EMBC.2015.7319804

G. Borghini, P. Aricò, F. Ferri, I. Graziani, S. Pozzi et al., A neurophysiological training evaluation metric for Air Traffic Management, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.3005-3008, 2014.
DOI : 10.1109/EMBC.2014.6944255

URL : https://hal.archives-ouvertes.fr/hal-00998940

G. Borghini, P. Aricò, I. Graziani, S. Salinari, Y. Sun et al., Quantitative Assessment of the Training Improvement in a Motor-Cognitive Task by Using EEG, ECG and EOG Signals, Brain Topography, vol.45, issue.1, pp.149-161, 2015.
DOI : 10.1007/s10548-015-0425-7

G. Borghini, L. Astolfi, G. Vecchiato, D. Mattia, and F. Babiloni, Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness, Neuroscience & Biobehavioral Reviews, vol.44, pp.58-75, 2012.
DOI : 10.1016/j.neubiorev.2012.10.003

J. B. Brookings, G. F. Wilson, and C. R. Swain, Psychophysiological responses to changes in workload during simulated air traffic control, Biological Psychology, vol.42, issue.3, pp.361-377, 1996.
DOI : 10.1016/0301-0511(95)05167-8

E. A. Byrne and R. Parasuraman, Psychophysiology and adaptive automation, Biological Psychology, vol.42, issue.3, pp.249-268, 1996.
DOI : 10.1016/0301-0511(95)05161-9

E. J. Calabrese, Neuroscience and Hormesis: Overview and General Findings, Critical Reviews in Toxicology, vol.562, issue.2, pp.249-252, 2008.
DOI : 10.1080/152873901753170731

J. R. Comstock, MATB -Multi-Attribute Task Battery for Human Operator Workload and Strategic Behavior Research, National Aeronautics and Space Administration, 1994.

P. L. Craven, N. Belov, P. Tremoulet, M. Thomas, C. Berka et al., Cognitive workload gauge develpment: comparison of Real-time classification methods, Past, Present and Future, pp.66-74, 2006.

A. Delorme and S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis, Journal of Neuroscience Methods, vol.134, issue.1, 2004.
DOI : 10.1016/j.jneumeth.2003.10.009

D. Flumeri, G. Aricò, P. Borghini, G. Colosimo, A. Babiloni et al., A new regression-based method for the eye blinks artifacts correction in the EEG signal, without using any EOG channel, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
DOI : 10.1109/EMBC.2016.7591406

D. Flumeri, G. Borghini, G. Aricò, P. Colosimo, A. Pozzi et al., On the Use of Cognitive Neurometric Indexes in Aeronautic and Air Traffic Management Environments, pp.45-56, 2015.
DOI : 10.1007/978-3-319-24917-9_5

M. C. Dorneich, P. M. Ververs, S. Mathan, and S. D. Whitlow, A Joint Human-Automation Cognitive System to Support Rapid Decision-Making in Hostile Environments, 2005 IEEE International Conference on Systems, Man and Cybernetics, pp.2390-2395, 2005.
DOI : 10.1109/ICSMC.2005.1571506

N. R. Draper, Applied regression analysis, Commun. Stat. Theory Methods, vol.27, pp.2581-2623, 1998.
DOI : 10.1002/9781118625590

T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters, vol.27, issue.8, pp.861-874, 2006.
DOI : 10.1016/j.patrec.2005.10.010

F. G. Freeman, P. J. Mikulka, L. J. Prinzel, and M. W. Scerbo, Evaluation of an adaptive automation system using three EEG indices with a visual tracking task, Biological Psychology, vol.50, issue.1, pp.61-76, 1999.
DOI : 10.1016/S0301-0511(99)00002-2

A. Gevins, M. E. Smith, H. Leong, L. Mcevoy, S. Whitfield et al., Monitoring Working Memory Load during Computer-Based Tasks with EEG Pattern Recognition Methods, Human Factors: The Journal of the Human Factors and Ergonomics Society, vol.40, issue.1, pp.79-91, 1518.
DOI : 10.1518/001872098779480578

G. Gratton, M. G. Coles, and E. Donchin, A new method for off-line removal of ocular artifact, Electroencephalography and Clinical Neurophysiology, vol.55, issue.4, pp.468-484, 1983.
DOI : 10.1016/0013-4694(83)90135-9

P. A. Hancock, R. J. Jagacinski, R. Parasuraman, C. D. Wickens, G. F. Wilson et al., Human-Automation Interaction Research: Past, Present, and Future, Ergonomics in Design: The Quarterly of Human Factors Applications, vol.21, issue.2, pp.9-14, 1177.
DOI : 10.1177/1064804613477099

P. A. Hancock and J. S. Warm, A Dynamic Model of Stress and Sustained Attention, Journal of Human Performance in Extreme Environments, vol.7, issue.1, pp.519-537, 1989.
DOI : 10.7771/2327-2937.1024

S. G. Hart and L. E. Staveland, Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research, 1988.
DOI : 10.1016/S0166-4115(08)62386-9

B. Hilburn, P. G. Jorna, E. A. Byrne, and R. Parasuraman, The effect of adaptive air traffic control (ATC) decision aiding on con-troller mental workload, " in Human-Automation Interaction: Research and Practice, Erlbaum), pp.84-91, 1997.

V. Jurcak, D. Tsuzuki, D. , and I. , 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems, NeuroImage, vol.34, issue.4, pp.1600-1611, 2007.
DOI : 10.1016/j.neuroimage.2006.09.024

W. Klimesch, EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis, Brain Research Reviews, vol.29, issue.2-3, pp.169-195, 1999.
DOI : 10.1016/S0165-0173(98)00056-3

J. Kohlmorgen, G. Dornhege, M. L. Braun, B. Blankertz, K. Müller et al., Improving human performance in a real operating environment through real-time mental workload detection, Toward Brain-Computer Interfacing, pp.409-422, 2007.

G. Mclachlan, K. Do, and C. Ambroise, Analyzing Microarray Gene Expression Data, 2005.
DOI : 10.1002/047172842X

C. Mühl, C. Jeunet, L. , and F. , EEG-based workload estimation across affective contexts, Front. Neurosci, 2014.

O. Donnell, R. D. Eggemeier, and F. T. , Workload assessment methodology, " in Handbook of Perception and Human Performance Cognitive Processes and Performance, pp.42-43, 1986.

R. Parasuraman, T. Bahri, J. E. Deaton, J. G. Morrison, and M. Barnes, Theory and Design of Adaptive Automation in Aviation Systems, Naval Air Warfare Center; Aircraft Division, 1992.

R. Parasuraman, R. Molloy, and I. Singh, Performance Consequences of Automation-Induced 'Complacency', The International Journal of Aviation Psychology, vol.29, issue.2, pp.1-23, 1993.
DOI : 10.1145/4547.4551

H. M. Parsons, Automation and the Individual: comprehensive and comparative views, Hum. Factors J. Hum. Factors Ergon. Soc, vol.27, pp.99-111, 1985.

A. T. Pope, E. H. Bogart, and D. S. Bartolome, Biocybernetic system evaluates indices of operator engagement in automated task, Biological Psychology, vol.40, issue.1-2, pp.187-195, 1995.
DOI : 10.1016/0301-0511(95)05116-3

L. J. Prinzel, F. G. Freeman, M. W. Scerbo, P. J. Mikulka, and A. T. Pope, A Closed-Loop System for Examining Psychophysiological Measures for Adaptive Task Allocation, The International Journal of Aviation Psychology, vol.17, issue.4, pp.393-410, 2000.
DOI : 10.1016/0301-0511(95)05101-5

N. Ramnani and A. M. Owen, Anterior prefrontal cortex: insights into function from anatomy and neuroimaging, Nature Reviews Neuroscience, vol.5, issue.3, pp.184-194, 2000.
DOI : 10.1038/nrn1343

A. Riccio, E. M. Holz, P. Aricò, F. Leotta, F. Aloise et al., Hybrid P300-Based Brain-Computer Interface to Improve Usability for People With Severe Motor Disability: Electromyographic Signals for Error Correction During a Spelling Task, Archives of Physical Medicine and Rehabilitation, vol.96, issue.3, pp.54-61, 2015.
DOI : 10.1016/j.apmr.2014.05.029

W. B. Rouse, T. B. Sheridan, and G. Johannsen, Adaptive Allocation of Decision Making Responsibility between Supervisor and Computer, Monitoring Behavior and Supervisory Control, NATO Conference Series, pp.295-306, 1976.
DOI : 10.1007/978-1-4684-2523-9_24

W. B. Rouse, Adaptive aiding for human/computer control, Hum. Factors J. Hum. Factors Ergon. Soc, vol.30, pp.431-443, 1988.

M. W. Scerbo, Theoretical perspectives on adaptive automation, " in Automation and Human Performance: Theory and Applications, Human Factors in Transportation, pp.37-63, 1996.

M. W. Scerbo, F. G. Freeman, and P. J. Mikulka, A brain-based system for adaptive automation, Theoretical Issues in Ergonomics Science, vol.4, issue.1-2, pp.200-219, 1080.
DOI : 10.1080/1463922021000020891

M. W. Scerbo, F. G. Freeman, P. J. Mikulka, R. Parasuraman, D. Nocero et al., The Efficacy of Psychophysiological Measures for Implementing Adaptive Technology, National Aeronautics and Space Administration, 2001.

F. Schettini, A. Riccio, L. Simione, G. Liberati, M. Caruso et al., Assistive Device With Conventional, Alternative, and Brain-Computer Interface Inputs to Enhance Interaction With the Environment for People With Amyotrophic Lateral Sclerosis: A Feasibility and Usability Study, Archives of Physical Medicine and Rehabilitation, vol.96, issue.3, 2015.
DOI : 10.1016/j.apmr.2014.05.027

D. Schmorrow, K. Stanney, G. Wilson, Y. , and P. , Augmented Cognition in Human-System Interaction, Handbook of Human Factors and Ergonomics, pp.1364-1384, 2006.
DOI : 10.1002/0470048204.ch52

T. B. Sheridan, Telerobotics, Automation, and Human Supervisory Control, 1992.

T. B. Sheridan and W. L. Verplank, Human and Computer Control of Undersea Teleoperators, 1978.

G. Shou, L. Ding, and D. Dasari, Probing neural activations from continuous EEG in a real-world task: Time-frequency independent component analysis, Journal of Neuroscience Methods, vol.209, issue.1, pp.22-34, 2012.
DOI : 10.1016/j.jneumeth.2012.05.022

J. Toppi, G. Borghini, M. Petti, E. J. He, V. D. Giusti et al., Investigating Cooperative Behavior in Ecological Settings: An EEG Hyperscanning Study, PLOS ONE, vol.123, issue.4, 2016.
DOI : 10.1371/journal.pone.0154236.t001

V. N. Vapnik, The Nature of Statistical Learning Theory, 2000.

U. Von-luxburg and B. Schíolkopfschíolkopf, Statistical Learning Theory: Models, Concepts, and Results, Handbook for the History of Logic, 2011.
DOI : 10.1016/B978-0-444-52936-7.50016-1

C. D. Wickens, Engineering Psychology and Human Performance, 1992.

J. Wolpaw and E. W. Wolpaw, Brain-Computer Interfaces: Principles and Practice, 2012.

J. N. Wood, J. R. Grafman, and J. D. Dodson, Human prefrontal cortex: processing and representational perspectives, Nature Reviews Neuroscience, vol.37, issue.2, pp.139-147, 1908.
DOI : 10.1038/nrn1033

T. O. Zander and S. Jatzev, Context-aware brain???computer interfaces: exploring the information space of user, technical system and environment, Journal of Neural Engineering, vol.9, issue.1, 2012.
DOI : 10.1088/1741-2560/9/1/016003

T. O. Zander, C. Kothe, S. Welke, and M. Roetting, Utilizing Secondary Input from Passive Brain-Computer Interfaces for Enhancing Human-Machine Interaction, Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience. eds D. D. Schmorrow, I. V, 2009.
DOI : 10.1109/TNSRE.2003.814456

J. H. Zhang, T. D. Chung, and K. Oldenburg, A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays, Journal of Biomolecular Screening, vol.4, issue.2, pp.67-73, 1999.
DOI : 10.1177/108705719900400206