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Abstract:

This paper presents a robustness analysis of gradient-based formation control law for second-
order agents subjected to distance mismatches or constant disturbances. It is shown that,
akin to the first-order case, the existence of these mismatches introduces two undesired group
behaviors: a distorted final shape and a stationary group motion. We show that such undesired
properties can be compensated by combining the gradient-based rigid formation control law and

our proposed distributed estimators.

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Formation Control, Rigid Formation, Motion Control, Second-Order dynamics.

1. INTRODUCTION

Maintaining a robotic formation has been one of important
features in the operational of cooperative robots. This is
highly relevant, for instance, during the exploration and
surveillance of terrain (Cesare et al. (2015), Burgard et al.
(2000)), for achieving energy-efficiency in group motion
Tsugawa et al. (2011), for carrying heavy loads by team of
robots Palunko et al. (2012), and many other group tasks.
In these applications, gradient-based formation control law
has been widely used due to its simplicity and ease of
implementation.

One of the common assumptions in the derivation of these
gradient-based control laws are that each robotic agent
is modeled by a single integrator. It implies that the
control action takes place in the velocity space, or in other
words, it is assumed that we can instantaneously control
the velocity of the robots. This assumption seems mild
but it is not applicable to a wide-range of Euler-Lagrange
systems where the control takes place in the acceleration
space. However, by considering such an assumption, a
simple gradient-based formation control using local dis-
tance information and local coordinates has been proposed
and rigorously analyzed in literature. We refer interested
readers to the works in Bai et al. (2011), Olfati-Saber and
Murray (2002), Krick et al. (2009), Yu et al. (2009), Cao
et al. (2011). It has been shown that such formation control
law can guarantee the exponential stability of the desired
shape (Sun et al. (2015), Sun and Anderson (2015)).

Despite the exponential stability property of the desired
shape, it is not robust against constant disturbances in
the proximity sensors or mismatches in the desired dis-
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307207).

tance between communicating first-order agents, as shown
recently in Mou et al. (2015) and Helmke et al. (2014). This
constant bias introduces two undesired group behaviours,
namely, distorted final formation shape and stationary
group motion. This open problem was first tackled in
Garcia de Marina et al. (2015) using distributed esti-
mators that can fully compensate the unknown constant
disturbances or distance mismatches so that the group
converges exponentially to the desired shape, without any
distortion or undesired collective motion. Interestingly,
when one looks from a different perspective where new
control variables replace the distance mismatches, we can
solve collective motion of a rigid formation problem with
rotational and translational group motion as proposed
very recently in Garcia de Marina et al. (2016b); a feat that
cannot be done via the standard leader-follower approach
with the use of estimators in all followers as pursued in
Bai et al. (2011). The same approach can be used to solve
the tracking and enclosing of a free target by a group of
robots that is not necessarily forming a circle, as commonly
considered in literature.

In this paper, we extend the aforementioned works in (Mou
et al. (2015), Helmke et al. (2014), Garcia de Marina et al.
(2015)) from the first-order agent case to the second-order
one. As mentioned before, this is more applicable since
many robotic systems are described by Euler-Lagrange
equations which correspond to second-order agents. In
this case, the resulting formation control law can directly
be used as the desired acceleration in a guidance system
feeding the tracking controller of a mechanical system as
the one proposed for quadrotors in Mellinger et al. (2012)
or for marine vessels in Fossen (2002). The robustness
stability analysis of the closed-loop system for second-
order agents, as discussed in this paper, cannot follow
the same steps as those used in (Mou et al. (2015),
Helmke et al. (2014)). In particular, the error system
that is considered in these papers for stability analysis
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is an autonomous system, which is not the case for the
second-order agent as shown later in Section 3. Hence, we
need to establish further additional steps in deriving the
robustness results.

In the first part of the paper, we study the robustness
of the gradient-based formation control for second-order
agents with respect to constant distance mismatches. In
the second part, we propose a distributed estimator design
that can eliminate the undesired behaviors due to the
existence of these mismatches. The rest of the paper is
organized as follows. We review some standard definitions
and notations in Section 2. In Section 3, we present our
first main result where we provide a robustness analysis in
the formation of second-order agents using gradient-based
formation control under the presence of distance mis-
matches. In Section 4, we propose the design of distributed
estimators in dealing with the distance mismatches.

2. PRELIMINARIES

In this section, we introduce some notations and concepts
related to graphs and rigid formations. For a given matrix

A € R"*P, define A 2 A0l R™™*P™  wwhere the
symbol ® denotes the Kronecker product, m = 2 for IR? or
otherwise 3 for R?, and I,,, is the m-dimensional identity
matrix. For a stacked vector z 2 [T 2T ... CE;‘:]T with
z; € R"1 € {1,...,k}, we define the diagonal matrix

D, 2 diag{xi}ic(1,..k} € RF"**  We denote by |X| the
cardinality of the set X and by ||z|| the Euclidean norm of
a vector x. We use 1,,%,,, and 0,,«,, to denote the all-one
and all-zero matrix in IR™*™ respectively and we will omit
the subscript if the dimensions are clear from the context.

2.1 Graphs and Minimally Rigid Formations

We consider a formation of n > 2 autonomous agents
whose positions are denoted by p; € IR™. The agents
can measure their relative positions with respect to its
neighbors. This sensing topology is given by an undirected
graph G = (V, &) with the vertex set V = {1,...,n} and
the ordered edge set £ C Vx V. The set N of the neighbors
of agent i is defined by N; = {j €V:(ij) € E}. We define
the elements of the incidence matrix B € RY*¢l for G
by

+1 i i =gpl

—1 if 4= ghead

0 otherwise,

where £ and £7°* denote the tail and head nodes,
respectively, of the edge &, ie. & = (&, ghead) A
framework is defined by the pair (G,p), where p =
col{p1,...,pn} is the stacked vector of the agents’ posi-
tions p;,¢ € {1,...,n}. Then we embed the positions of
the agents in the graph’s nodes and the available relative
measurements in the graph’s edges. With this at hand, we

define the stacked vector of the measured relative positions
by

>

bix

z=DB p,
where each vector z; = p; — p; in z corresponds to the
relative position associated with the edge & = (1, 7).

>

(a) (b) ()

Fig. 1. a) The square without an inner diagonal is not rigid
since we can smoothly move the top two nodes while
keeping the other two fixed without breaking the dis-
tance constraints; b) The square can be done locally
minimally rigid in IR? if we add an inner diagonal; c)
The tetrahedron in IR? is globally infinitesimally and
minimally rigid.

For a given stacked vector of desired relative positions
z* 71T the resulting set Z of the possible
formations with the same shape is defined by

A *
2={(Ig®R)2"}, (1)
where R is the set of all rotational matrices in 2D or 3D.

Roughly speaking, Z consists of all formation positions
that are obtained by rotating z*.

_ «T _+T *
i[zl 237 e g

Let us now briefly recall the notions of infinitesimally rigid
framework and minimally rigid framework from Anderson
et al. (2008). Define the edge function fg by fe(p) =
c](c)l (Ilz&]*) where the operator col defines stacked column

vector and we denote its Jacobian by R(z) and is called
the rigidity matriz. A framework (G, p) is infinitesimally
rigid if rankR(2) = 2n — 3 when it is embedded in R?
or if rankR(z) = 3n — 6 when it is embedded in R3.
Additionally, if |€] = 2n—3 in the 2D case or |€| = 3n—6 in
the 3D case then the framework is called minimally rigid.

Roughly speaking, the only motions that we can perform
over the agents in an infinitesimally and minimally rigid
framework, while they are already in the desired shape,
are the ones defining translations and rotations of the
whole shape. Some graphical examples of infinitesimally
and minimally rigid frameworks are shown in Figure 1. If
(G, p) is infinitesimally and minimally rigid, then, similar
to the above, we can define the set of resulting formations
D by
Dé{zﬂn%nzﬁwe{LmJag,

where di, = ||z;|], k € {1,...,|€]}.

Note that in general it holds that Z C D. For a desired
shape, one can always design G to make the formation
infinitesimally and minimally rigid. In fact in IR?, an
infinitesimally and minimally rigid framework with two
or more vertices can always be constructed through the
Henneberg construction Henneberg (1911). In R one
can construct a set of infinitesimally and minimally rigid
frameworks via insertion starting from a tetrahedron, if
each new added vertex with three new links forms another
tetrahedron as well.

2.2 Frames of coordinates

It will be useful for describing the motions of the infinites-
imally and minimally rigid formation to define a frame of
coordinates fixed to the formation itself. We denote by O,
the global frame of coordinates fixed at the origin of IR™
with some arbitrary fixed orientation. In a similar way, we
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denote by Oy the body frame fixed at the centroid p, of the
desired rigid formation. Furthermore, if we rotate the rigid
formation with respect to Oy, then Oy is also rotated in the
same manner. Let bpj denote the position of agent j with
respect to Op. To simplify notation whenever we represent
an agents’ variable with respect to O, the superscript is

omitted, e.g. p; 2 Ip;.

3. ROBUSTNESS ISSUES DUE TO MISMATCHES IN
FORMATION GRADIENT-BASED CONTROL

3.1 Gradient Control

Consider a formation of n agents with the sensing topology
G for measuring the relative positions among the agents.
The agents are modelled by a second-order system given

by
Pz ©)

V=1
where © and v are the stacked vector of control inputs

u; € R™ and vector of agents’ velocity v; € IR™ for
i ={1,...,n} respectively.

In order to control the shape, for each edge & = (i, )
in the infinitesimally and minimally rigid framework we
assign the following potential function Vj

1
Villzel) = 7(112l1* = d2)?,
with the gradient along p; or p; given by
Vi Vie = =V, Vi = zi(ll2* — df).
In order to control the agents’ velocities, for each agent

7 in the infinitesimally and minimally rigid framework we
assign the following potential function .S;

1
Si(vi) = §||Uz‘||2,
with the gradient along v; be given by

V'ui S,‘ = Vj.
One can check that for the potential function
V| €]

G(p,v) = _Si+ > Vi, 3)
i=1 k=1

the closed-loop system (2) with the control input
U= _vv¢ - Vpd% (4)

becomes the following dissipative Hamiltonian system (see
also Schaft (2006))

pP=Vyo
{U = _vv(b - vp¢ (5)

Considering (3) as the storage energy function of the
Hamiltonian system (5), one can show the local asymptotic
convergence of the formation to the shape given by D and
all the agents’ velocities to zero (Bai et al. (2011); Oh and
Ahn (2014)).

Let the following one-parameter family of dynamical sys-

tems H given by
Z:) — _ AIm\Vl 7(1 - )‘)ImW\ Vp¢ (6)
v (1 - )‘)Im\V\ Im|V| N

where A € [0, 1], which defines all convex combinations of

the Hamiltonian system (5) and a gradient system. The

family H, has two important properties summarized in
the following lemma.

Lemma 1. Oh and Ahn (2014)

e For all A € [0, 1], the equilibrium set of H is given by
the set of the critical points of the potential function

o, ie. B, = {[pT W77 Ve = 0}.

e For any equilibrium [pT UT}T € E,, and for all
A € [0,1], the numbers of the stable, neutral, and
unstable eigenvalues of the Jacobian of H, are the
same and independent of .

This result has been exploited in Sun and Anderson (2015)
in order to show the local exponential convergence of z(t)
and v(t) to D and O respectively. In the following brief
exposition we revisit the result to show such exponential
stability via a combination of Lyapunov argument and
Lemma 1, which will play an important role in Section
3.2.

Define the distance error corresponding to the edge & by
ex = ||2xl[* — df,
whose time derivative is given by é; = QZEZ'k. Consider

the following autonomous system derived from (6) with
A=0.5

1— 1
p=—-BD.e+ -v

2 2
17— 1
. —§BTBDZe T §BTU (7)
¢=-DTB ' BD,e+ D B v (8)
1— 1
V= 7§BDZ€ - 5'1), (9)
where e is the stacked vector of e;’s for all k € {1,...,|&|}.

Define the speed of the agent ¢ by
si = [[vill,

T .
vV Vg

whose time derivative is given by §; = ——. Their compact

form involving all the agents can be written as

1 — 1
$=D;D v = —§D§D;FBD26 - 5ngj);%, (10)

where s and s are the stacked vectors of s;’s and ?ll ’s for all
i € {1,...,|V|} respectively. Now we are ready to show the
local exponential convergence to the origin of the speed of
the agents and the error distances in the edges.

Lemma 2. The origins e = 0 and s = 0 of the error and
speed systems derived from (5) are locally exponentially
stable if the given desired shape D is infinitesimally and
minimally rigid.

The proof of this lemma can be found in the proof of
Lemma 3.2 in Garcia de Marina et al. (2016a).

Remark 3. Tt is worth noting that the region of attraction
determined by p in the proof of Lemma 2 for A = 0.5 might
be different from the one for A = 1, since Lemma 1 only
refers to the Jacobian of (6), i.e. the linearization of the
system about the equilibrium.

It can be concluded from the exponential convergence to
zero of the speeds of the agents s(¢) that the formation
will eventually stop. This implies that p(t) will converge
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exponentially to a finite point in IR™ as z(t) converges
exponentially to D.

3.2 Robustness issues caused by mismatches

It is obvious somehow that for a general distance-based
formation control problem with n = 2, if the two agents do
not share the same prescribed distance to maintain, then
an eventual steady-state motion will happen regardless of
the dynamics of the agents since the agent with a smaller
prescribed distance will chase the other one. Therefore,
for n > 2 it would not be surprising to observe some
collective motion in the steady-state of the formation if
the neighboring agents do not share the same prescribed
distance to maintain.

When two neighboring agents disagree on the desired
squared distance di in between, namely

ditail _ dihead — Lk, (11)

where p;, € IR is a constant mismatch, it can be checked
that this disagreement leads to mismatched potential
functions, therefore agents ¢ and j do not share anymore
the same Vi, for & = (i,7), namely

1 o1
Vi = 0l = a2+ V= (]l - )2,

under which the control laws for agents ¢ and j use the
gradients of V! and V{ respectively for the edge & = (i, 7).
In the presence of one mismatch in every edge, the control
signal (4) can be rewritten as

u=—v—BD,e—S1D.pu, (12)
where S7 is constructed from the incidence matrix by
setting its —1 elements to 0, and u € Rl is the stacked
column vector of uy’s for all k € {1,...,|€|}. Note that
(12) can be also written as

u=—v— BD.e— A;(u)z, (13)
where the elements of A; are
A fp if =g
ik = . 14
ik {0 otherwise. (14)

Inspired by Mou et al. (2015), we will show how p can be
seen as a parametric disturbance in an autonomous system
whose origin is exponentially stable. Let the error signal
e and the speed of the agents s derived from system (2)
with the control input (4)

¢e=2DTB v (15)
$=—5—D;DI'BD.e, (16)

and define
api = ztv, ke{l,. . &L ie{l,..., ]V} (17)
Bij =vivi, i,5€{l,...,|V|},i#]. (18)

We stack all the ag;’s and 8;;’s in the column vectors

|5||V‘ vidvi+1) . A
aeR and e R 2 respectively and define vy =
[eT s ol BT]T. We know that for any infinitesimally
and minimally rigid framework, there exists a neighbor-
hood U, about this framework such that for all z, z; € U,
with k,1 € {1,...,|€]}, we can write z} 2 by a smooth
function ggi(e) (Mou et al. (2015)). Then using (15)-(18)

we get
¥ = f(’Y)a (19)

which is an autonomous system whose origin is locally
exponentially stable using the results from Lemmas 1
and 2. Obviously, in such a case, the following Jacobian
evaluated at y =0

af(v)

Oy =0 ’

J =

has all its eigenvalues in the left half complex plane. From
the system (2) with control law (12) we can extend (19)
but with a parametric disturbance p because of the third
term in (12), namely

Y =f(rn), (20)

where f(v,0) is the same as in (19) derived from the
gradient controller. Therefore, for a sufficiently small ||ul],
%ﬂy’“) is still a stable matrix since the
v=0
eigenvalues of a matrix are continuous functions of its
entries. Although the system (20) is still stable under the
presence of a small disturbance p, the equilibrium point
is not the origin in general anymore but v(t) — §(u) as

the Jacobian

t goes to infinity, where 4(u) = v, is a smooth function
of p with zero value if 4 = 0 (Khalil and Grizzle (1996)).
This implies that in general each component of e, s, « and
B converges to a non-zero constant with the following
two immediate consequences: the formation shape will
be distorted, i.e. e # 0; and the agents will not remain
stationary, i.e. s # 0. The meaning of having non-zero
components in general in « and 3 is that the velocities
of the agents have a fixed relation with the steady-state
shape. If the disturbance ||u|| is sufficiently small, then
[[5(p)]| < p for some small p € R™ implying that ||é(u)|| <
p, and if further p is sufficiently small, then the stationary
distorted shape is also infinitesimally and minimally rigid.
In addition since the speeds of the agents converge to a
constant (in general non-zero constant), then only trans-
lations and/or rotations of the stationary distorted shape
can happen. We summarize in the following theorem.

Theorem 4. Consider system (2) with control input (12)
where the desired shape for the formation is infinitesimally
and minimally rigid and p is considered as a small para-
metric perturbation. Then, the formation will converge to
a distorted infinitesimally and minimally rigid shape, i.e.
e # 0, and the agents will converge to a steady-state collec-
tive motion that can be captured by constants angular and
translational velocities bw* and ®v*, respectively, for the

co

distorted infinitesimally and minimally rigid formation.

For the full proof of this theorem, we refer interested reader
to the proof of Theorem 3.4 in Garcia de Marina et al.
(2016a).

Remark 5. In particular, in 2D the distorted formation
will follow a closed orbit if I';(y,) # 0 for all 4, or a
constant drift if I';(y,) = 0 for all 4. This is due to the
fact that in 2D, bw* and ®v* are always perpendicular or
equivalently a,,(t) and v,,(t) lie in the same plane. The
resultant motion in 3D is the composition of a drift plus
a closed orbit, since *w* and v} are constant and they do
not need to be perpendicular to each other as it can be
noted in Figure 2.

Remark 6. Although the disturbance p acts on the ac-
celeration of second-order the agents, it turns out that
the resultant collective motion has the same behavior as
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b

Fig. 2. The velocities *w* and v’ at the centroid of
the tetrahedron rotates and translates the infinitesi-
mally and minimally rigid formation respectively. For
having constant vectors “w* and v’ the formation
describes a closed orbit in the plane where *w* and *v*
are perpendicular (always the case in 2D formations)
plus a constant drift along the projection of v* over

b,

w™.

for having the disturbance p acting in the velocity for
first-order agents. A detailed description of such a motion
related to the disturbance in first-order agents can be
found in Sun et al. (2014); Garcia de Marina et al. (2016b).

4. ESTIMATOR-BASED GRADIENT CONTROL

Let us consider the following distributed control law with
estimator

e 2t

uw =-v—BD,e—S1D,(p—fp)’
where [ € Rl is the estimator state and @ is the
estimator input to be designed. Substituting the above
control law to (2) gives us the following autonomous
system

p=v (21)
v =—v—BD,e—S1D.(p— fr) (22)
;=B p=DB o (23)
¢=2DT:=2DTB v (24)

)

o =1a. (25
Note that the estimating agents are encoded in Si, in other
words, for the edge & the estimating agent is S}Call.

Theorem 7. For the autonomous system (21)-(25) that
forms a rigid formation, consider a given desired formation
shape and the following distributed control action for the
estimator [

i=-DTS v, (26)
where the estimating agents are chosen arbitrarily. Then
the equilibrium points (p*,v*, z*,e*, i*) of (21)-(25) are
asymptotically stable. Furthermore, v* = 0 and the

steady-state deformation of the shape satisfies [|e*||?> <
2ln = 2(0)[1% + 2/|v(0)]* + [le(0)][*.

The proof of this theorem can be found in the proof of
Theorem 4.1 in Garcia de Marina et al. (2016a).

Remark 8. For a triangle (in 2D case) or tetrahedron (in
3D) shape, it can be shown easily that e*,&* = 0.

In comparison to the distributed estimator as proposed in
Garcia de Marina et al. (2015), the proposed of update
law of estimator in Theorem 7 (c.f. Eq. (26)) is gain
independent as opposed to the one proposed in Garcia de
Marina et al. (2015). In this case, there is no lower bound

of estimator gain as required in the aforementioned result.
Furthermore, using the proposed method in Theorem 7,
we can choose the estimating agents (as embedded in
S1) arbitrarily while the proposed estimator in Garcia de
Marina et al. (2015) has to be chosen carefully. One of the
drawback in the proposed estimator above is that the final
shape may no longer be the desired shape.

If we adopt the same approach as in Garcia de Marina
et al. (2015), we can guarantee that the mismatches can
be fully compensated such that the final shape is the
desired shape. We recall the following update law for each
estimator as used in Garcia de Marina et al. (2015) in
order to remove effectively both, the distortion and the
steady-state collective motion:

ﬂk:K(ek+uk_ﬂk)vk6{17~'-a|5|}a (27)

where x € IRT is an estimator gain that needs to be
determined. For the first-order agents, it has been shown
in Garcia de Marina et al. (2015) that there is a lower
bound for choosing .

Consider now the following change of coordinates hy =
ex + pr — i and let h € IR'®! be the stacked vector of hi’s
for all k € {1,...,|€|}. By defining S, £ B — S it can

be checked that the following autonomous system derived
from (22)-(25)

0=—v—S89D,e—S1D.h (28)
¢=2D,B v (29)
h=2D.B"v—kh (30)
;=B v, (31)

has an equilibrium at e*,v* and h* equal to zero with
z* € Z. The linearization of the autonomous system (28)-
(31) about such an equilibrium point leads to

b _T'V'T —SsD,« —S1D,« 0 v

¢l _|20-B" o 0 o e 2
h| ~ |2D..B" 0  —klg of |h 8
z B 0 o o]l

From the Jacobian in (32) we know that the stability of
the system only depends on v,e and h and not on z. We

consider the following assumption as in Garcia de Marina
et al. (2015).

—Tjy| —S2D.«

Assumption 9. The matrix b
2D« B 0

} is Hur-
witz.

Theorem 10. If Assumption 9 holds then there exists a
positive constant x* such that the equilibrium of h =
0,v = 0 and e = 0 (with z* € Z) of the autonomous
system (22)-(25) with the estimator input 4 be given by
(27) is locally exponentially stable for all k > k* > 0.

Proof. Taking the Jacobian for v,e and h in (32) along
with Assumption 9 as starting point, the main argument
of the proof is identical to the one provided in the main
result of Garcia de Marina et al. (2015) and it is omitted
here for the sake of brevity.

Remark 11. Since v(t) converges exponentially to zero, it
follows immediately that p(t) converges exponentially to a
fixed point p*.
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The Assumption 9 is also related to the stability of
formation control systems whose graph G defining the
sensing topology is directed. In fact, it is straightforward to
check that the matrix in the Assumption 9 is the Jacobian
matrix for v and e in a distance-based formation control
system (without mismatches) with only directed edges in
G. This relation shows how to choose the estimating agents
in order to fulfill Assumption 9.

5. CONCLUSIONS

In this paper we have studied the robustness issue in
the application of gradient-based formation control law
for second-order agent dynamics under the influence of
distance mismatches. It is shown that the closed-loop sys-
tems exhibit the same undesired behaviors as in the first-
order case, i.e., a stationary distorted shape and undesired
collective group motion. Finally, we have proposed two
different solutions for compensating the detrimental effects
of distance mismatches or constant disturbances in the
proximity sensors by employing distributed estimators.
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