Invariant Unscented Kalman Filter with application to attitude estimation

Abstract : The Invariant UKF, named IUKF, is a recently introduced algorithm dedicated to nonlinear systems possessing symmetries as illustrated by the quaternion-based kinematics modeling of a mini-UAV (Unmanned Aircraft Vehicle) considered in this paper. Within an invariant framework, this algorithm suggests a systematic approach to determine all the symmetry-preserving terms, without requiring any compatibility condition such as proposed in the PI-IUKF, by introducing both notion of invariant output errors and UKF algorithm formulation. We propose in this paper to evaluate the applicability of our proposed IUKF observer to the case of attitude estimation for small UAVs using low-cost sensors. The IUKF algorithm is successfully validated in experiments and demonstrates that nonlinear state estimation converges on a much bigger set of trajectories than for more traditional approaches.
Type de document :
Pré-publication, Document de travail
IEEE Control Systems, Institute of Electrical and Electronics Engineers, 2017. 2017
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-01509884
Contributeur : Laurence Porte <>
Soumis le : jeudi 8 juin 2017 - 12:01:44
Dernière modification le : mercredi 13 décembre 2017 - 09:03:18
Document(s) archivé(s) le : samedi 9 septembre 2017 - 12:55:00

Fichier

LCSS_2017_IUKF.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01509884, version 1

Collections

Citation

Jean-Philippe Condomines, Cédric Seren, Gautier Hattenberger. Invariant Unscented Kalman Filter with application to attitude estimation. IEEE Control Systems, Institute of Electrical and Electronics Engineers, 2017. 2017. 〈hal-01509884〉

Partager

Métriques

Consultations de la notice

105

Téléchargements de fichiers

122