Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Invariant Unscented Kalman Filter with application to attitude estimation

Abstract : The Invariant UKF, named IUKF, is a recently introduced algorithm dedicated to nonlinear systems possessing symmetries as illustrated by the quaternion-based kinematics modeling of a mini-UAV (Unmanned Aircraft Vehicle) considered in this paper. Within an invariant framework, this algorithm suggests a systematic approach to determine all the symmetry-preserving terms, without requiring any compatibility condition such as proposed in the PI-IUKF, by introducing both notion of invariant output errors and UKF algorithm formulation. We propose in this paper to evaluate the applicability of our proposed IUKF observer to the caseof attitude estimation for small UAVs using low-cost sensors. The IUKF algorithm is successfully validated in experiments and demonstrates that nonlinear state estimation converges on a much bigger set of trajectories than for more traditional approaches.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-01509884
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : jeudi 8 juin 2017 - 12:01:44
Dernière modification le : mercredi 3 novembre 2021 - 08:09:27
Archivage à long terme le : : samedi 9 septembre 2017 - 12:55:00

Fichier

LCSS_2017_IUKF.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jean-Philippe Condomines, Cédric Seren, Gautier Hattenberger. Invariant Unscented Kalman Filter with application to attitude estimation. CDC 2017, 56th IEEE conference on decision and control, Dec 2017, Melbourne, Australia. pp.ISBN: 978-1-5090-2874-0, ⟨10.1109/CDC.2017.8264063⟩. ⟨hal-01509884⟩

Partager

Métriques

Consultations de la notice

171

Téléchargements de fichiers

647