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The Invariant Unscented Kalman Filter

Jean-Philippe Condominesa, C·edric Serenb and Gautier Hattenbergerc

Abstract� This article proposes a novel approach for non-
linear state estimation. It combines both invariant observers
theory and unscented �ltering principles whitout requiring any
compatibility condition such as proposed in the �-IUKF algo-
rithm. The resulting algorithm, named IUKF (Invariant Un-
scented Kalman Filter), relies on a geometrical-based construc-
tive method for designing �lters dedicated to nonlinear state
estimation problems while preserving the physical invariances
and systems symmetries. Within an invariant framework, this
algorithm suggests a systematic approach to determine all the
symmetry- preserving terms without requiring any linearization
and highlighting remarkable invariant properties. As a result,
the estimated covariance matrices of the IUKF converge to
quasi-constant values due to the symmetry-preserving property
provided by the invariant framework. This result enables the
development of less conservative robust control strategies. The
designed IUKF method has been successfully applied to some
relevant practical problems such as the estimation of attitude
for aerial vehicles using low-cost sensors reference systems.
Typical experimental results using a Parrot quadrotor are
provided in this paper.

I. INTRODUCTION

An overview of nonlinear estimation methods can be
found in the litterature from many surveys or books [13],
[14]. As they merge different nonlinear estimation principles,
Kalman-based invariant observers can be quali�ed as hybrid
�lters. Although dynamical systems possessing symmetries
have been studied in control theory, few results taking
bene�t of system invariances for observers design exist
today. Invariant nonlinear estimation theory appears so as
a young research area in which the �rst main contributions
can be dated from the beginning of 2000s [1], [7], [2], [3],
[5], [6], [10], [11], [18], [20]. Initially, research was going
on in the development of constructive methods to derive
invariant observers for nonlinear estimation purposes which
preserve systems’ symmetries. If this kind of non-systematic
approaches keeps physical readiness, it may require to tune
an important number of setting parameters when computing
estimation gains, which can be cumbersome for complex sys-
tem modelings. That is why, more systematic techniques have
been developped which are able to facilitate estimators’ gains
computation. There exist two major approaches to permform
Bayesian �ltering for a state evolving on an Euclidean space :
the Kalman �lter (KF) such as (Extended Kalman �lter or
Unscented Kalman �lter) and the particle �lters. Howerver
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among those methods only a few works tried to extend them
to manifolds (see table I). The Invariant Extended Kalman
Filter (IEKF - [6], [3]) permits to determine gain matrices for
minimum variance estimation. This optimality must be con-
sidered here w.r.t. an invariant state estimation error which
will be de�ned precisely further. An important drawback in
this method is that it requires to linearize the system of
differential equations which govern the invariant state es-
timation error dynamics. Such an operation appears suitable
for simple system modelings only s.t. UAVs whose dynamics
can be represented easily based on kinematics relationships.
Indeed, this kind of nonlinear state space representation can
be differentiated analytically towards its state vector. For
more complex system modelings, this linearization may be
dif�cult to carry out. Nevertheless, the IEKF, and more
generally invariant observers, are characterized by a larger
convergence domain, due to the exploitation of systems’
symmetries within the estimation algorithm (i.e., within �lter
equations and gains computation), and present very good
performances in practice. In order to derive more tractable
nonlinear invariant state estimation algorithms, motivated by
the practical problems encountered by the authors with mini-
UAVs �ight control and guidance, civil aircraft modeling and
identi�cation and dynamic system fault detection, isolation
and recovery, an hybridization of the Unscented KF (UKF)
principles [17], [22] with invariant observers theory has been
recently proposed but requiring a compatibility condition see
[10], [11].

Approach State manifold System Filter
[6] Lie groups Continuous EKF
[4] SO(3) Cont-Discrete EKF
[23] Riemannian Discrete PF
[24] Stiefel Discrete PF
[21] Grassmann Discrete PF
[8] Matrix Lie groups Discrete EKF
[9] Matrix Lie groups Cont-Discrete EKF
[16] Riemannian Discrete UKF
This paper Lie groups Discrete UKF

TABLE I
CATEGORIZATION OF THE STATE OF THE ART APPROACHES ON KALMAN

AND PARTICLE FILTERING FOR A STATE EVOLVING ON A MANIFOLD.

This article focuses on these recent research works and
proves that an Invariant UKF-like estimator (named IUKF)
could be simply designed by introducing both notions of
invariant state estimation and invariant output errors within
any UKF algorithm formulation, without requiring any com-
patibility condition such as proposed in the �-IUKF[10].
Besides, it has been shown that, for some well-known nav-
igation problems devoted to UAVs, equations of any IUKF-



based observer in discrete-time could be expressed quite
simply whitout requiring any compatibility condition which
is the main contribution. Similarly, an extension of nonlinear
invariant observers has been made for Rao-Blackwellized
Particle Filters (PF) that can be used for nonlinear state
estimation [3]. Invariant PFs (IPF) rely on the notion of
conditional invariance which corresponds to classical system
invariance properties, but once some state variables are
assumed to be known. It is those known states that will be
sampled throughout the estimation process. It is noteworthy
that, for the obtained IPF, the Kalman gains computed are
identical for all particles which drastically reduces the com-
putational effort usually needed to implement any PF. All the
previous estimation methodologies have allowed the invariant
observers theory to be applied in many application �elds
since the beginning of the 2000s. Rather than enumerating
all of them, which would be out of the scope of this technical
paper, we prefer focusing here on the use, become popular in
the domain of electro-mechanical systems in robotics, of the
invariant observers for solving nonlinear attitude estimation
problems from both inertial/vision multisensors data fusion.
Many bibliographical references, such as for instance [2],
[19], [18], tackle this speci�c issue exploiting nonlinear
invariant observers. Both properties and capabilities of this
peculiar class of method make any invariant observer-based
estimation scheme dedicated to dynamical system navigation
appealing, especially when there exists, in addition, hardware
redundancy. In that case, automated vehicles can reach
an acceptable level of robustness w.r.t. degraded operating
conditions such as, for example, in indoor or GPS-denied
environments, and in case of single or multiple sensor faults.
Using an invariant observer-based algorithm to merge an ex-
tended (and potentially redundant) set of measurements can
still provide good performances and convergence properties
in such situations.

In the sequel, xII presents the theoretical background of
our proposed IUKF estimation algorithm and an illustrative
example �tted out with a tilt sensor system.xIII gathers some
results obtained after solving the Attitude and Heading Refer-
ence System (AHRS) estimation problem in real conditions.

II. THE INVARIANT UNSCENTED KALMAN FILTER

A. IUKF algorithm
Inspired by the theory of continuous-time symmetry pre-

serving observer [5] a novel and original UKF-based ap-
proach has been developed in [12] to adress the approx-
imation issue of the invariant EKF without requiring any
linearization of the dynamical systems equations or compat-
ibility condition such as proposed in the �-IUKF algorithm
[10]. The idea is to exploit the UKF principles within a
continuous-time invariant framework. This section presents
brie�y the main theoretical principles of some research works
dealing with dynamical system symmetries, invariant ob-
server and IUKF algorithm. Without considering any system
description, the theory of invariant observer is formulated
using both differential geometry and transformation groups
theory presented in [5].

De�nition 1: Considering a continuous nonlinear G-
invariant/equivariant dynamical system modelling �, the
general form of a nonlinear continuous-time symmetry-
preserving state observer will be de�ned s.t.:

9̂x�fpx̂;uq �
n‚

i�1

!
sKirEs �Epx̂; Ix̂u; zq

)
:wipx̂q (1)

In (1), x̂ refers to the estimated state vector. z is the
measurements vector. All the measurements are assumed to
be corrupted by noises and some of them are subject to
bias-type errors. Both assumptions on noises and additive
state variables will permit to account for these disturbances
for invariant nonlinear state estimation. Equation (1) follows
the standard expression of many nonlinear state estimators
(such as Luenberger observers or Kalman �lters) in which
a model-based prediction, calculated here from G-invariant
process equations, is corrected to produce estimation time
derivative. For invariant nonlinear state estimation however,
correction must be constructed s.t. Eq. (1) will be also G-
invariant. In other words, observer’s dynamics must verify
similar invariance properties w.r.t. the original system. Thus,
in formulation (1), the gain matrix @i P rr 1 ;n ss; sKirEs �
sKirEpx̂; Ix̂u; zqs depends on the system’s trajectory only
through a known complete set of invariant Ipx̂;uq �  x̂�1puq
and on the invariant output error E :� �x̂�1phpx̂;uqq �
�x̂�1pzq. wipx̂q :�

�
D’px̂qpx̂q

��1 � B{Bxi is an invariant
vector which projects the set of invariant correction terms
on each component of fpx̂;uq (i.e. the tangent state space).
pB{Bxiq is the i-th canonical vector �eld of Rn.

The convergence properties of p1q depend on the choice
of sKirEs and in the way the state estimation error is de�ned.
Instead of considering the usual �linear� state estimation
error x̂�x, the invariant observer theory de�nes an invariant
state estimation error denoted �px; x̂q � x�1x̂ which has
invariant properties.

De�nition 2: The asymptotic convergence of x̂ to x is
equivalent to the stability of the invariant state error dynamic
which takes the general form:

9� � �p�; Ipx̂;uqq (2)

where � is a smooth function. It appears that � depends on
the system’s trajectory only through the invariant Ipx̂;uq.
For numerous applications, the invariant observer gain(s)
calculation can be addressed ad hoc by �rst, investigating the
observer detailed nonlinear equations, and then, by choosing
gain value(s) which will meet some prede�ned require-
ments in terms of: - convergence (guarantee and domain);
- decoupling purposes; - subsystems settling time/damping
ratio; - etc. This calculation can also be carried out with
more genericity by adapting well-proven optimal �ltering
techniques. This has led to the development of the so-called
Invariant Unscented Kalman Filter (IUKF).

The IUKF relies on the basic theoretical principles devel-
oped by Julier and Uhlmann at the beginning of 2000s [17]
which have been since widely applied to various nonlinear
state estimation problems [22]. The standard UKF algorithm



exploits a deterministic sampling technique, known as the
unscented transform, in order to pick a minimal set of sample
points, also called sigma points, around the mean state vector.
These latter are then propagated through the nonlinear state f
and output h equations, from which both estimated mean and
covariance are then recovered. The resulting �lter captures
the true mean and covariance with more accuracy than any
other Kalman �ltering techniques. In addition, this method
removes the requirement to explicitly calculate the Jacobian
matrices Bf{Bx and Bh{Bx w.r.t. standard Extended Kalman
Filter (EKF), which can be a dif�cult task in itself for
complex systems. Besides, to improve its computational ef�-
ciency the standard UKF algorithm can be derived in several
factorized versions. In the sequel, the square-root formulation
will be considered. The developed IUKF algorithm (see [12])
permits to design a nonlinear discrete-time invariant state
observer by a numerical scheme using a fourth order Runge-
Kutta integration. �d is de�ned as following :

@k P N; �d :
"

xk�1 � fdpxk;ukq � vk
yk � hdpxk;ukq �wk

Integer k corresponds to the time index. vk (resp. wk) refers
to the discrete Gaussian process (resp. observation) noise.
�ij is the Kronecker symbol. The estimation process starts
with the computation of the 2n�1 sigma points, denoted by
X , s.t. X p0q

k|k � x̂k|k. This calculation is based on the scaled
unscented transformation which scatters the points according
to the estimated state error covariance matrix Pxx

k|k � Sxx
k|k �

pSxx
k|kq

T at time k, and provides also two series of 2n � 1
scalar weighting factors, denoted by tW piq

m u and tW piq
c u

(i P rr 0 ; 2n ss), for mean and covariance approximations.
During prediction step, all sigma points are then propagated
through both G-invariant fd and G-equivariant hd in order
to deduce vectors x̂k�1|k and ŷk�1|k, but also covariance
matrices Sxx

k�1|k, Syy
k�1|k and Pxy

k�1|k associated with both
state and output invariant errors.

Proposition 1: Considering the whole state space rep-
resentation of �d, the composite transformation �gPG �
p g; ’g; �gq and starting from initial values x̂0 � Erx0s,
Pxx

0 � Er�px0; x̂0q�T px0; x̂0qs the two-steps procedure
(prediction/correction) permit to design the following invari-
ant nonlinear state observer in discrete time:

˚ @i P rr 0 ; 2n ss;

X piq

k�1|k � fdpX piq

k|k;ukq æ x̂k�1|k �
2n‚

i�0

W piq
m X piq

k�1|k

¸ Sxx
k�1|k �$

’’’’’&

’’’’’%

qr
�a

W p1q
c

�
�px̂k�1|k;X

p1q

k�1|kq � : : :

�px̂k�1|k;X
p2nq

k�1|kq
	

V1{2
k

�

cholupdate
�
Sxx
k�1|k;�px̂k�1|k;X

p0q

k�1|kq;W
p0q
c

	

Ì @i P rr 0 ; 2n ss;

ŷpiqk�1|k � hdpX piq

k|k;ukq æ ŷk�1|k �
2n‚

i�0

W piq
m ŷpiqk�1|k

˝ Syy
k�1|k �$

’’’’’’’’’&

’’’’’’’’’%

À qr
�a

W p1q
c

�
EpX p1q

k�1|k; I
X p1q

k�1|k
uk ; ŷk�1|kq : : :

EpX p2nq

k�1|k; I
X p2nq

k�1|k
uk ; ŷk�1|kq



W1{2

k

�

` cholupdate
�
Syy
k�1|k; : : :

EpX p0q

k�1|k; I
X p0q

k�1|k
uk ; ŷk�1|kq;W p0q

c




˛ Pxy
k�1|k �

2n‚

i�0

W piq
c �pX

piq

k�1|k; x̂k�1|kqE
T pX piq

k�1|k; I
X piq

k�1|k
uk ; ŷk�1|kq

ˇ @i P rr 1 ;n ss;
sKirEs � ith row of K � pPxy

k�1|k{pS
yy
k�1|kq

T q{Syy
k�1|k

— F : x̂k�1|k�1 �

x̂k�1|k�
n‚

i�1

sKirEs �Epx̂k�1|k; I
x̂k�1|k
uk ; zk�1q:wipx̂k�1|kq

Ñ Sxx
k�1|k�1 � cholupdate

�
Sxx
k�1|k;KSyy

k�1|k;�1
	

Previous matricial computations rely on both QR de-
composition and rank 1 update to Cholesky factorization
(cholupdate). Local transformations p g; ’g; �gq are here
de�ned as for system �d. In this formulation, state, output
and crossed error covariances are now de�ned from system
modelling invariants. It is clear by transitivity that these
matricial quantities are left unchanged by the composite
transformation �gPG � p g; ’g; �gq.

Unlike the Invariant Extended Kalman Filter (IEKF), the
proposed IUKF does not require a linearization of 9�pxt; x̂tq
w.r.t � for its gain matrix computation step. When any given
permanent trajectory t ÞÑ pxpptq;upptqq is followed (i.e.,
s.t. @t; Ixp

up
ptq � �I), 1st order approximation of Eq. (2)

shows that if K is also determined s.t. matrix B�p0;�Iq{B�
is stable, then observer F will converge locally around
pxpptq;upptqq. Reuse of system modelling invariances within
invariant observer design also guarantees that it will converge
for any group action image p gpupptqq; ’gpxpptqqqgPG.

This property is remarkable especially for dynamical sys-
tems described by kinematics relationships whose dynamics
is invariant by translation and rotation movements inside an
invariant frame. By doing this, correction step procedure
relies on the determination of the n additive gain which
depend on system fundamental invariants and invariant in-
novation terms. Moreover, the invariant correction terms are
projected on each component of the dynamical equations by
considering the canonical basis of Rn such as Bpx̂k�1|kq �
t!ipx̂k�1|kquiPrr 1 ;n ss vectors form an invariant frame for
each x̂ P X . Thus, the IUKF algorithm relies on a multiple
parametrization de�ned by local transformation groups. Con-
sidering the transformation group �g � p’g;  g; �gq each
inverse of sigma point can be de�ned as a local parameter
of p2n� 1q invariant frame which project each sigma point
on the neutral element e thought the local application ’g .



The developped IUKF is a natural approach, by combining
both invariant observers theory and unscented �ltering prin-
ciples, to dertermine all the summetry-preserving correction
terms, without requiring any linearization of the differential
equations or compatibility condition such as proposed in
[10]. It can be seen as a generic algorithm without involving
any form of the observation equation or relations de�ning
the transformation group �g .

B. illustrative example

In this section, we illustrate and prove that the proposed
algorithm retains the invariance of the problem, and that the
error’s evolution is independent of the system’s trajectory,
inheriting the properties of the deterministic continuous-
time case [5]. Thus, we consider a tilt sensor system as a
simple case study applied to an object attitude estimation
where we desire to determine only the pitch angle �. The
nonlinear state estimation makes use of 3 accelerometers
give a measurement of the speci�c acceleration denoted by
am � pa1; a2; a3qT .

!g

!

a1

a3

(K )

(k)

O

!
a1a3

(K !)

(k)

! ! 0

Fig. 1. A �ying object in a vertical plane : the system remains unchanged
under the action group SO(2)

All these measurements are obviously corrupted by ad-
ditive noises for which it appears reasonable to assimilate
their stochastic properties to the ones of Gaussian processes.
Based on the application of Euler angles and direction cosine
matrix transformation, the pitch angle � can be determined
from the following system of non-linear equations s.t :

�
ya1

ya3



�
�
� sinp�q
cosp�q



� hpxq (3)

If the platform is stationary (the tilt angle do not change
throughout the measurement period), it is possible to assume
that the pitch angle is constant. The process equation be-
comes :

9� � 0 (4)

The nonlinear state space representation can be described
in a compact form such as: 9x � fpx;uq and y � hpx;uq
where x � � et y � pya1 ; ya3qT . Considering the expressions
of system modelling and the Lie-group G de�ned s.t. G � R,
the following input, state and output transformations prove

that the system is both G-invariant and G-equivariant. These
latter read @g0 � �0 P G and @pu;x;yq P U � X � Y:

 g0puq � 0
’g0pxq � p� � �0q

�g0pyq �
�
ya1 cos �0 � ya3 sin �0
ya3 cos �0 � ya1 sin �0


 (5)

Therefore, the moving frame pxq which conveys any
state vector to e is given by x�1 � ��. Consequently, the
analytical expression of the invariant output error Epx̂; Ix̂u; zq
reads in this applicative case:

E � �x�1pŷa1 ; ŷa3q � �x�1pya1 ; ya3q

�
�

cos �0 � sin �0
sin �0 cos �0


�
ŷa1

ŷa3



�
�

cos �0 � sin �0
sin �0 cos �0


�
ya1

ya3




�
�

cos �̂ sin �̂
� sin �̂ cos �̂


�
ŷa1 � ya1

ŷa3 � ya3




we note that the invariant output error correspond to a
classical output error projected in the Frenet frame. Based on
these results, the observer considered in the IUKF algorithm
takes the following form:

9̂� � 0� �K
�

cos �̂ sin �̂
� sin �̂ cos �̂


�
ŷa1 � ya1

ŷa3 � ya3



(6)

where �K is a smooth 1�2 gain matrix whose entries depend
on the invariant error E but also on the invariants.
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Fig. 2. The location of the sigma points errors and the effect of the rotation
� for the UKF (cross) and the IUKF (circle, red)

Figure 2 illustrates the previous explanations by applying
the developed IUKF algorithm to simulated data corrupted
by a Gaussian white noises whose noise covariance matrices
are set to : Q� � 1e � 2 and Ry � 0:5rad. The sigma
points output errors calculated by the IUKF converge as
expected in a linear way (i.e, @�) after a slight convergence
whereas those of the UKF have an irregular evolution due
to an estimation output error which is not projected into a
Frenet frame which does not preserve the symmetries of the
system.



III. BENCHMARK AND APPLICATION

A. Dynamic system modeling

This subsection details the generic modelling used to
tackle and solve the issue of estimating some key �ight
variables (attitude-orientation, angle rates, etc.) of mini-
UAVs �tted out with an Attitude and Heading Reference
System (AHRS). UAVs dynamics representation corresponds
here to a pure quaternionial kinematics modelling (whose
related quaternion will be denoted by q), supplemented by
additive state variables which represent low frequency sen-
sors’ imperfections (such as slowly varying biases). Thereby,
we consider:

� :

$
’’’’’’’&

’’’’’’’%

9x�

�

���

9q � q � p!m � !bq{2
9!b � 0
9as � 0
9bs � 0

�

��;

y�
�

yA � asq�1 �A � q
yB � bsq�1 �B � q



(7)

where !m is seen as an imperfect and noisy, but known,
measured input, like B. Constant A � p0 0 gqT refers
to the local Earth’s gravity vector. Nonlinear state space
representation of Eq. (7) can be described in a compact
form s.t. 9x � fpx;uq and y � hpx;uq where u � !m,
x � pqT !Tb as bsqT and y � pyTA yTBqT are the
input, state and output vectors respectively. The nonlinear
state estimation problem makes use of 3 triaxial sensors
which deliver a total of 9 scalar measurement signals: à
3 magnetometers permit to obtain a local measurement
of Earth’s magnetic �eld, which is known constant and
expressed in the body-�xed frame s.t. vector yB � q�1�B�q
(where B � pBx By BzqT ) can be considered as an output
of the observation equations; à 3 gyroscopes produce the
measurements associated with the instantaneous angular rates
gathered in !m P R3 s.t. !m � p!mx !my !mzqT ; à
and 3 accelerometers provide the measured output signals
coresponding to the speci�c acceleration, denoted by am P
R3 with am � pamx amy amzqT . As no velocity and
position information is available (no GPS, nor airspeed data
fusion), this AHRS is often quali�ed as non-aided. Thus,
to keep the whole nonlinear state representation observable
given these available measurements, the assumption that
the linear acceleration 9V remains negligible is also made
i.e., 9V � 0. Consequently, the speci�c acceleration vector,
expressed in the body-�xed frame, can be approximated by
�asq�1�A�q � �yA and compared with its corresponding
imperfect and noisy measurement am. Taking into account
the maximum number of sensors’ imperfections (such as
low frequency disturbances) within the estimation process
requires the introduction of 2 additive state variables due to a
1st-order observability analysis (see [5] for more calculation
details). These 2 additive variables correspond to positive
constant scaling factors, denoted by as and bs adjust and
correct the predicted outputs yA and yB respectively. All
these sensor imperfections are modelled as pseudo-Gaussian

random walks which can be physically interpreted as slowly
varying parameters.

B. IUKF estimator derivation

Considering the expressions of system modeling given in
Eq. (7) and the Lie-group G de�ned s.t. G � H1 � R5

(where H1 designates the differentiable manifold composed
of quaternions with unit norm which is homeomorphic to
R3), the following input, state and output transformations
prove that system modeling � is both G-invariant and G-
equivariant (see de�nition in [5]). These latter read @g0 �
pqT0 !T0 a0 b0qT P G and @pu;x;yq P U � X � Y:

 g0puq � q�1
0 � !m � q0 � !0

’g0pxq � ppq � q0qT pq�1
0 � !b � q0 � !0qT : : :

as:a0 bs:b0qT
�g0pyq � ppa0:q�1

0 � yA � q0qT pb0:q�1
0 � yB � q0qT qT

(8)
From Eq. (8), one can deduce easily that the composite
transformation �g � p g; ’g; �gq is equivalent to time-
constant rotations and translations in both Earth- and body-
�xed frames. By posing Q � q�q0, 
b � q�1

0 �!b�q0�!0
and 
m � q�1

0 �!m �q0�!0, it can be demonstrated that,
for instance, the 1st equation of 9x � fpx;uq is indeed G-
invariant:

2 9Q � 2

:hkkkikkkj
pq � q0q� q � p!m � !bq � q0

� q � pq0 � q�1
0 � !m � q0 � q�1

0 � !bq � q0
� Q � p
m �
bq

It follows that the neutral element e of G associated with ’g0

is given by p1T 0T 1 1qT (where 1 � p1 0 0 0qT and 0 �
p0 0 0qT ). Therefore, the moving frame pxtq which conveys
any state vector to e is given by x�1 � pq�T p�q � !b �
q�1qT 1{as 1{bsqT . Consequently, the analytical expression
of the invariant output error E reads in this applicative case:

Epx̂; Ix̂u; zq � hpe; Ix̂uq � �x̂�1pzq

�
�

EA � A� â�1
s :q̂ � am � q̂�1

EB � B� b̂�1
s :q̂ � bm � q̂�1




In Eq. (III-B), bm is the magnetic �eld measurement. Be-
sides, the invariant basis vectors can be also clari�ed. By
posing Wpx̂q �

 
pwq̂

i qiPrr 1 ; 3 ss pw!̂b
i qiPrr 1 ; 3 ss wâs wb̂s

(
the

invariant vectors basis and considering B � pviqiPrr 1 ; 3 ss the
canonical basis of R3, we have:
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0
0
0

�

��

iPrr1;3ss

�

���

0
q̂�1 � vi � q̂

0
0

�

��

iPrr1;3ss

�

���

0
0
as
0

�

��

�

���

0
0
0
bs

�
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Mixing all these results allows to derive the observer con-
sidered in the IUKF algorithm s.t.:

9̂q �
q̂ � p!m � !̂bq

2
� : : :

3‚

i�1

� sK1:3
i rEs:EA� sK4:6

i rEs:EB
�
vi � q̂� Cq̂

9̂!b � q̂�1 �
� 6‚

i�4

� sK1:3
i rEs:EA� sK4:6

i rEs:EB
�

� q̂

9̂as� âs:
� sK1:3

7 rEs:EA� sK4:6
7 rEs:EB

�

9̂bs � b̂s:
� sK1:3

8 rEs:EA� sK4:6
8 rEs:EB

�

(9)
Thereby, we consider the invariant state estimation error s.t.:

�

���

�
�
�


�

���

�

���

q̂ � q� 1
q̂ � p!̂b � !bq � q̂�1

as{âs
bs{b̂s

�

��

In the previous equation, the notation sKj:k
i rEs (with i P

rr 1 ;n ss and pj; kq P pN�q2) designates the gain submatrix
obtained by concatenating the columns of sKirEs between
the jth and the kth positions. The additive (and invariant)
vector Cq̂, which reads p1� }q̂}2qq̂, permits to keep }q̂} �
1 through time along the estimation process. By denoting
�px; x̂q � p� � � �qT � ppq̂ � q � 1qT pq̂ � p!̂b � !bq �
q̂�1qT as{âs bs{b̂sqT , the invariant state estimation error
dynamics is given by:
$
’’’’’’’’’’’&

’’’’’’’’’’’%

9� � p
3‚

i�1

p sK1:3
i rEs:EA � sK4:6

i rEs:EBqviq � � �
1
2
� � �

9� � p��1 � Ix̂u � �q � � � : : :

��1 �
3‚

i�1

p sK1:3
i rEs:EA� sK4:6

i rEs:EBq � �

9� � ��p sK1:3
7 rEs:EA� sK4:6

7 rEs:EBq
9 � �p sK1:3

8 rEs:EA� sK4:6
8 rEs:EBq

As it was beforementioned, the reader can notice that the
invariant state estimation error dynamics depends on sys-
tem’s trajectory t ÞÑ pxt;utq through the invariant quantity
Ix̂u which is a major difference with most of nonlinear esti-
mators. Unlike the Invariant Extended Kalman Filter (IEKF
-[6]), the proposed IUKF does not require a linearization of
9�pxt; x̂tq w.r.t. � for its gain matrix computation step. This
linearization can appear as a dif�cult operation in itself and
especially for any practical implementation.

C. Experimental results
Due to a lack of space, we brie�y evaluate the IUKF

performances experimentally by post-processing a set of ex-
perimental data on the basis of both the dynamical modelling
of Eq. (7) and the �ltering equations of Eq. (9). Figure 3
displays a picture of the Parrot quadrotor mini-UAV under
test and an image of the indoor �ight performed to gather
these real data. It also illustrates that this experiment has
been made using an OptiTrack system which permits to
have at disposal absolute references (see http://www.

(a) Parrot quadrotor mini-UAV. (b) Indoor �ight experiment.

Fig. 3. Experimental materials: Parrot quadrotor mini-UAV and OptiTrack
device.

optitrack.com/). As no speci�c autopilot hardware
device has been designed for this experiment, it is noteworthy
that data fusion will merge low quality measurement signals
delivered directly by the cheap electromechanical sensors
which equip any Parrot quadrotor. The interest of the follow-
ing results relies less on the ability of the IUKF algorithm to
estimate systems’ states and outputs than on the practical ver-
i�cation of the theoretical properties asserted by the invariant
observers framework when dealing with real data. To point
out these latter, the results obtained with the IUKF algorithm
have been systematically compared with the ones provided
by a standard UKF approach. To lead a fair comparison,
both techniques share identical setting parameters values
i.e., similar estimated process and measurement covariances
values for matrices V and W. Figure 4 shows the estimation
results of the quaternion state components obtained by both
UKF and IUKF algorithms. It is noticeable that both methods
provide correct estimates w.r.t. the absolute references plotted
in solid red lines. The differences between the two algorithms
appear when we consider the dispersion around the estimated
state trajectory. Indeed, the black dashed lines plotted on each
sub�gure, which correspond to the q̂ptq�3� �̂qptq standard
deviations around the mean estimated value, tend to prove
that the IUKF estimation algorithm calculates more trustful
quaternion estimates, or at least reduces the dispersion of
these state estimates, due to the invariant framework used.
Based on these quaternion estimates, the instantaneous Euler
attitude angles values, which describe at any time instant the
orientation of the �ying Parrot, have been deduced through
time and compared with the absolute references determined
by the OptiTrack system (Fig. 5). It appears that both
algorithms allow to reconstruct a suitable attitude estimation
for control purposes. The 3-axis p�; �;  q estimation state
errors w.r.t. the absolute references are also drawn using
a logarithmic scale and show comparable results for both
techniques.

Expected differences brought by the invariant observer
theory used to design our IUKF algorithm can be observed
on Figure 5, which display, through time, both computed
theoretical standard deviations and �lters correction gains.
By merging these results, it can be concluded that our
proposed IUKF estimation technique is characterized by
quasi-constant estimated standard deviations and correction
gains w.r.t. any standard UKF estimation algorithm. Ex-
ploiting system’s dynamics invariances in order to design



Fig. 4. Estimated standard deviations on quaternion and Euler angles associated errors: comparison UKF/IUKF.

Fig. 5. Correction gains and estimated theoretical standard deviations: comparison UKF/IUKF.



nonlinear state estimation approaches allows to construct
powerful nonlinear observers whose properties will be quasi-
independent from the current followed trajectory. Therefore,
state estimation uncertainties can be quanti�ed by quasi-
constant values through time (see for instance standard
deviations on q̂). This paves the way for designing less con-
servative, but robust, estimated state-feedback control laws
in order to improve mini-UAVs �ying and handling qualities.
Similarly to the theoretical standard deviations computed by
the IUKF observer, the correction gains (cf. Fig. 5) appear
less sensitive to the non-stationary noises levels, so that we
can conclude that the invariant framework offers a better
high frequency perturbations rejection in terms of �ltering
capabilities. In the case of the IUKF estimator, these gains
could be also approximated by constant values, after a given
transient regime, rather than in the case of the standard UKF
algorithm.

IV. CONCLUSION AND FUTURE PROSPECTS

This article has presented an innovative procedure to
derive an invariant observer for nonlinear state estimation.
This latter, named IUKF, combines both invariant observers
theory and unscented �ltering principles. Its methodological
foundation, which forms the main contribution of this paper,
consists in adapting the computational steps of any UKF-like
technique (standard or square-root version) to calculate the
estimation correction terms. This adaptation relies �rstly on
the introduction of an invariant innovation vector in the ob-
server �ltering equation. Then, an invariant state estimation
error is also de�ned and used jointly to update through time
all covariance matrices. It is noteworthy that, by construction,
these covariances are left unchanged by dynamical systems’
symmetries (i.e., all combinations of translation and rotation
motions). This confers to K some properties of invariance
which leads, by transitivity, to design an IUKF symmetry-
preserving state observer. In comparison with the state-
of-the-art, our proposed IUKF nonlinear state estimation
algorithm presents one main advantage when considering
computational aspects. Indeed, it does not require any dif-
ferential equations linearization unlike IEKF or compatibility
condition such as proposed in the �-IUKF. The experimental
results presented in xIII-C have shown an equivalent capa-
bility of our proposed IUKF technique in comparison with
an UKF method for nonlinear state estimation. These results
have also permitted to check in realistic conditions some in-
variance properties which characterize our designed observer.
Among these latter, stability of estimated standard deviations,
which characterize estimated state trajectory uncertainties,
must be highlighted since it could facilitate new control
strategies design with less conservatism. Future works will be
on the theoretical development and mathematical justi�cation
of our proposed �lter. We will also investigate the possibility
to use constant gain matrices, optimized of�ine by the IUKF,
into a complementary observer. The bene�t of this solution
would be to take advantage of the computational simplicity
of the complementary observer but with optimal correction
terms provided by the IUKF.
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