Generating optimal aircraft trajectories with respect to weather conditions
Brunilde Girardet, Laurent Lapasset, Virginie Aubreton

To cite this version:
hal-01511745

HAL Id: hal-01511745
https://hal-enac.archives-ouvertes.fr/hal-01511745
Submitted on 21 Apr 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Generating optimal aircraft trajectories with respect to weather conditions

Goal: Compute optimal routes in Cruise Flight.

Why? Increase Air Traffic Capacity and reduce time travel and fuel consumption.

Assumption: Constant Air Speed and Constant Flight Level.

Our methodology : Front Propagation method

Relied on *Ordered Upwind Algorithm*: technique to track the propagation by solving a partial differential equation known as the *Hamilton-Jacobi equation*:

\[
\begin{align*}
\nabla u \cdot F &= \left(x, \frac{\nabla u}{\|\nabla u\|} \right) = 1, \text{ where } u \text{ is the optimal cost and } F \text{ is the speed of the front in the normal direction} \\
\n\nabla u &= 0 \text{ on the initial point}
\end{align*}
\]

Principle:
1. Start at the initial point with the cost \(u = 0 \);
2. Compute the propagation of the front from the initial point corresponding to the minimal cost \(u \);
3. Construct the optimal path by tracing backward.

One aircraft

Without Obstacle

Speed of the front: \(F = \text{Aircraft Ground Speed} \)

With Obstacles

\(F = \text{function(Aircraft Ground Speed, Obstacles)} \)

<table>
<thead>
<tr>
<th>Time (seconds)</th>
<th>Optimal route</th>
<th>Direct route</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal route</td>
<td>1470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct route</td>
<td>1498</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Profit: ≈ 30 seconds for 30 min of flight time; 1.9% of time saved for the trajectory.

Several aircraft

Idea: Propagate the front in the configuration space of several aircraft.

Example: for two aircrafts, state space \(\mathbb{R}^4 - \Delta \) with \(\Delta = \{(x, y_1) = (x_2, y_2)\} \) and \((x, y_1, x_2, y_2) \in \mathbb{R}^4 \) the coordinates of both aircraft.

Problem: Curse of dimensionality.

Proposed solution: Use *Approximate Dynamic Programming* methods to compute good approximations and not the exact optimal trajectories.

Contacts

Brunilde Girardet - PhD Student - brunilde.girardet@capgemini.com
Laurent Lapasset - Engineer R&D ATM - laurent.lapasset@capgemini.com
Virginie Aubreton - Manager ATM Unit - virginie.aubreton@capgemini.com