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A New Framework for
Solving En route Conflicts

Cyril Allignol, Nicolas Barnier, Nicolas Durand,
and Jean-Marc Alliot

The en route conflict resolution problem has been modeled in many differ-
ent ways, generally depending on the tools proposed to solve it. For
instance, with purely analytic mathematical solvers, models tend to be very
restrictive to respect the inherent limitations of the technology.

This paper introduces a new framework that separates the model from
the solver so as to be able to: first, enhance the model with as many refine-
ments as necessary to comply with operational constraints; second, com-
pare different resolution methods on the same data, which is a crucial
aspect of scientific research.

To this aim, our framework generates a benchmark of conflict resolution
problems built with various scenarios involving different numbers of air-
craft, levels of uncertainties and numbers of maneuvers. We then compare
two different optimization paradigms, Evolutionary Algorithm and Con-
straint Programming, which can efficiently solve difficult instances in near
real time, to illustrate the usefulness of our approach.

INTRODUCTION

An effective conflict solver relies on a realistic trajectory prediction.
Today, because of different uncertainty sources such as wind and
aircraft mass, air traffic management systems are unable to predict
the future positions of aircraft with a good accuracy and must take
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into account all these uncertainties to choose the best trajectories in
terms, first, of safety and then, efficiency. These certainties probably
explain why the short-term traffic resolution system still relies on
human expertise and is not yet automated.

Much research has been done on conflict detection and resolution
and many papers present models that are so impractical that they
strengthen the readers’ beliefs that automating the conflict detection
and resolution task is unrealistic in the near-term. For example, the
approach using repulsive forces described in [Zeghal, 1993] or the
B-spline approximation model of [Delahaye et al., 2010] are very
interesting on a mathematical level but could hardly be implemented
in an operational context. They suppose continuous heading changes,
which Flight Management Systems (FMS) are unable to exploit, and
do not take wuncertainties into account. Pallottino’s approach
[Pallottino et al., 2002] using mixed integer linear programming (as
[Vela et al., 2009, Alonso-Ayuso et al., 2011, Rey et al., 2012]) relies on
constant speed trajectories that are changed all at once. None of
these approaches could deal with realistic trajectory models able to
handle evolutive aircraft or trajectory uncertainties.

Other approaches like [Durand et al., 1996, Granger et al., 2001]
propose to solve conflicts using Evolutionary Algorithms, relying on
more realistic models built upon the Base of Aircraft Data (BADA)
developed and maintained by EUROCONTROL. These models intro-
duce uncertainties on aircraft speed, climb and descent rate, thus the
solver needs to compute many alternative trajectories in real time.
Nevertheless, the solver is quite efficient as it can handle complete
days of traffic in the European airspace. These algorithms, however,
are difficult to compare with other methods because the conflict detec-
tion is embedded in the solver. This problem also occurs in Erzberger’s
approach [Erzberger, 1997], where most of the expertise is focused on
the trajectory and maneuver model. Once more, the presented results
can hardly be compared with other algorithms because the resolution
maneuver generator is embedded in the solver.

We propose a new framework to deal with conflict resolution,
which, from a given scenario, trajectory model, and maneuver model,
computes a 4D-matrix indexed by aircraft pairs and maneuvers (i.e.,
trajectories) pairs that provides all necessary data to solve the prob-
lem. Hence, the detection and maneuver model is separated from the
resolution, which enables us to compare the behavior of various algo-
rithms at the same time. As the conflict resolution problem is highly
combinable, and as large instances can, therefore, be very difficult to
optimize [Durand and Granger, 2003], it is of utmost importance to be
able to assess the relative merits of solvers, even if finding the opti-
mal solution is often not required in a real-time context (a “good”
conflict-free solution can be sufficient). This clean separation between
the underlying models (trajectory and maneuver) and resolution
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allows us to publish a benchmark, which can be retrieved at the fol-
lowing address:

clusters.recherche.enac.fr

for the scientific community to compare the results of various resolu-
tion algorithms. In our benchmark framework, finding the future
positions can be done using any simulator and can take into account
different uncertainty sources such as wind, heading change, and
beginning and ending maneuver positions.

Once the future positions for all possible maneuvers are found, a
simple algorithm can detect conflicts for each pair of aircraft and
store this information in a 4D conflict matrix C, the first two indexes
specifying the pair of aircraft involved and the next two the
concerned maneuvers. For example, C; ;. ; returns true if maneuver
k of aircraft i and maneuver [ of aircraft j are conflicting, and false
otherwise. When solving conflicts, instead of recomputing the trajec-
tory positions of each aircraft, solvers can refer to this 4D-matrix
quickly, in constant time complexity.

We then illustrate how resolution times and costs of different solvers
can be fairly compared within our benchmark framework. Two resolu-
tion algorithms using different optimization paradigms have been
implemented: a metaheuristic, namely an Evolutionary Algorithm
[Michalewicz, 1992], which is able to handle over-constrained or very
large instances, but cannot provide optimality proofs, and a Constraint
Program [Van Hentenryck, 1995], which has the converse properties
(may be stalled while backtracking for large scale problems, but able to
provide proofs of optimality or absence of solution for reasonable ones).

The next section of this paper introduces the model that was chosen
to build the trajectories of our benchmark framework. We particularly
detail its uncertainty model and how the convex hulls of trajectories
are built. The following section describes the method used to build
conflicting scenarios with different sizes (number of aircraft) and
levels of uncertainties, before presenting the detection algorithm that
builds the 4D conflict matrix. We then detail two approaches for the
resolution of conflicts, an Evolutionary Algorithm and a Constraint
Program, to illustrate their comparison with our benchmark frame-
work, where some experimental results are analyzed.

TRAJECTORY PREDICTION MODEL

In this section we give an example of a trajectory prediction tool that
can be used to build the aircraft positions at each time step according
to the chosen maneuver options and the uncertainties taken into
account. To constrain the search space to a “reasonable” size, only a
limited number of maneuvers, compatible with current ATC practice
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and FMS capabilities, is defined for each aircraft involved in a con-
flict. Then, each pair of maneuvers for two different aircraft is tested
to check for confliction.

Moreover, our model can handle various degrees of uncertainties by
considering the future positions of aircraft not simply as mere 2D-points
in the airspace but as growing convex envelopes representing all its
possible positions. Loss of separation between aircraft is then detected
by computing the minimal distance between their two envelopes.

Maneuvers

In our trajectory prediction model, a discretization of time into steps
of duration 7 is used to describe maneuvers. 7 is chosen small enough
to detect every significant conflict in the application. Only conflicts at
the fringe of the detection volume and lasting less than t seconds
could be missed, as indicated by the formula (detailed in [Barnier
and Allignol, 2012]:

D > Ny, sin <arcos <%> )

were N, is the horizontal separation norm, V... is the top speed
of the aircraft fleet and D is the closest approach distance during
the conflict.

In our experiments, we chose 1 = 3 s (given N, = 5 nmi and V., =
600 kn), so that conflicts might only occur for 5 nmi > D > 4.97, which
is commonly accepted for fast-time simulations as such routing
schemes are not allowed by standard ATM practice.

Trajectories are defined in the horizontal plane, but the scenarios
could be extended easily to the vertical dimension if we used a proper
flight simulator. Initial routes are defined by a list of points. The first
point O is the origin and the last point D is the destination (e.g. a
segment of trajectory between two waypoints). Aircraft fly from point
to point and are able to correct the lateral error to the original trajec-
tory thanks to their FMS. This means that in the further examples,
the associated uncertainty does not increase with time.

Various other sources of uncertainties cannot be reduced by cur-
rent FMS features and must be taken into account in our model.
Hence, aircraft speeds are subject to a ¢ error such that future posi-
tions of aircraft are spread over a range that grows with time.

In our trajectory model, maneuvers (i.e., heading changes) are
engaged on a point of the initial trajectory referenced by the decision
variable dj, which represents the curvilinear distance from the ori-
gin O. Because of uncertainties on the exact location of the turn, a
distance error ¢y is added around this point. This means that the
aircraft may start the maneuver ¢y nautical miles before or after d,.
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O

Figure 1. Maneuver model.

An uncertainty ¢, is also associated to the heading change angle «
at the turning point corresponding to dy. Then the maneuver ends at
a curvilinear distance d; from dg (i.e. at dg + d; from the origin O)
with an associated error ¢;, when the aircraft returns towards its
destination point D.

These simple maneuvers, depicted in figure 1, are representative
of current Air Traffic Control practice and can be implemented eas-
ily by pilots and current FMS technologies (cf. [Granger et al., 2001]),
unlike continuous maneuvers at arbitrary angles and distances
that are used in many conflict resolution models [Zeghal, 1993;
Delahaye et al., 2010].

To limit the number of maneuvers created, and thus the size of the
search space, dg can only take a limited number nq of values (typi-
cally no = 5 in the experimental benchmark presented in section 5).
The heading change o can also take n, = 7 different values in our
benchmark, i.e. 0, 10, 20 or 30 degrees to the left or the right of the
current heading, and the number of values for the distance of the
returning point d; is also limited by n, (typically n, = 5).

If we consider 5 values for dy, 5 values for d; and the 6 possible
angles (there is no need to combine a null heading change « = 0 with
various d and d; values, so that only one maneuver is added when the
aircraft is not deviated), the number of maneuvers per aircraft is:

Nman = No X N1 X (ny, — 1) +1

So for the benchmark presented in the later section on Benchmark
Generation Scenarios: nman =5 X 5 x 6+ 1 = 151.

For an instance with n aircraft, the search space is then of size nl.  ,
i.e. ~6.10%! for a 10-aircraft instance (almost 4.10*3 for 20 aircraft).

Decision Variables

To simplify the access to the conflict matrix C and reduce the number
of combinations to the useful ones (e.g., only one possible maneuver
for « = 0), the three decision variables dy, o« and d; associated
with aircraft i are aggregated into a single decision variable m; by a
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bijection from the allowed triples to interval [1, n,,.,]. We call M the
set of decision variables of the problem:

M = {m;,i € [1,n]} (1)

Cost

The maneuver cost of our model is straightforwardly computed from
the decision variables. Values of d, are enumerated by an index &,
varying in [1, nol, values of d; by index k7 in [1, n1] and angles o of
value 10, 20 or 30 degrees right or left, are respectively indexed by &,
in [1, %] >]. For our benchmark problems, the cost of a maneuver m;
for aircraft i is then defined as follows:

0 ifao=0
CoStman(m;) = { (no — k0)2 + k% + kf otherwise @)

where kg, k1 and %, are the indexes corresponding to maneuver m;.
This cost is null whenever an aircraft is not maneuvered.
Furthermore, this cost function ensures the following properties:

any maneuver is more costly than no maneuver;
maneuvers should start as late as possible;
maneuvers should be as short as possible;

the angle should be as small as possible.

L

In a real environment, the cost function should be adapted to the
aircraft performance model or to other criteria, including controllers’
preferences and fuel consumption. This paper, however, aims at giv-
ing a framework that dissociates the solver method from the problem
itself, so as to provide the scientific community (which may be unfa-
miliar with ATM and conflict resolution) with the simplest possible
framework in which to compare different solvers on our benchmark.

Given an instance with n aircraft, we define the cost of a solution as
the sum of the maneuvers costs:

cost = ) costman(m;) (3)

n
i=1

Handling Uncertainties

We shall now describe how the trajectories envelopes are built to be
able to detect conflicts between two maneuvers for two different air-
craft, while taking various uncertainties into account.

In our framework, the maneuvers description is stored in a table
that defines the possible future positions of the aircraft for each
aircraft and each maneuver at every time step. These positions are
represented by their convex hull (i.e., the smallest convex set



NEW FRAMEWORK FOR SOLVING EN ROUTE CONFLICTS 7

containing all possible positions at a given time step), which is com-
puted with Graham’s algorithm [Graham, 1972].

Each aircraft position is described at multiples of the time step
(ie., 0,7, 21,3 1...) by three convex hulls corresponding to the
three possible states of the aircraft:

* Sy ifit has not been maneuvered yet;
e S, ifit is currently maneuvered;
e S, ifit is heading towards its destination after a maneuver.

Once the three convex hulls are defined for every time step, if there
are any instances of multiple states occurring within a single step
(e.g., around trajectory turning points), they are merged into a single
encompassing convex hull for that step.

We first start with one point representing the current position of
the aircraft at # = 0. To build the possible positions at ¢ + 7, we take
into account every extreme position of the three convex hulls at time ¢
and calculate the future possible positions of each point. During this
process, some points stay in the same state while others change near
the turning points of the trajectory. Moreover, some points may gen-
erate two different future positions in two different states. For exam-
ple, a point in state S, (before any maneuver) may reach dy — ¢y at the
next step if the aircraft flies at the fastest possible speed according to
the amount of uncertainty taken into account by parameter ¢q. It will
then change heading and be in state S;. The same point may as well
fly at the lowest possible speed and stay in state S,. After each
movement, the convex hull of the cloud of points created is computed
for each state. At the very end of the process, the convex hull of the
whole trajectory is calculated for each time step.

Figure 2 displays a maneuver with the different states involved
(each state being associated to a unique plot style). At each time step,
the thin gray line shows the convex hull encompassing all possible
positions. The conflicts will then be detected among such envelopes
by computing their minimal distance.

Importantly, notice that any traffic simulator using any kind of
uncertainty hypothesis could be used to build the trajectory prediction

ni
0 c(";x"ih' i
0 I SERTRIAT
2 ged Ui,
A L L:l\j‘vr\'\
i '*-h‘_i‘ i\"\
) "\"}‘\?‘\:\
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iy,

Figure 2. An example of trajectory prediction. Different plot styles correspond to
states So, S; and Sy; gray parts represent the convex hulls.
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for the aircraft and for the maneuver options. Different aircraft could
have different uncertainties and different maneuver options according
to their ability to follow a route. We simply need a convex hull of the
possible future positions of an aircraft at every time step of the trajectory.

This approach can easily be generalized to the third dimension
(vertical plane), taking into account uncertainties on the climbing
rate of the aircraft. Convex 3D- volumes would thus be defined and
conflicts detected according to the distance between them.

BENCHMARK GENERATION

The trajectory prediction presented in the previous section is used to
produce the data for the proposed benchmark. To generate an
instance, two consecutive processes are involved: first the creation of
conflicting scenarios, then the detection of conflicts.

Scenarios

In the experimental results presented in the Results section,
instances of four different sizes have been considered, involving n =
5, 10, 15 and 20 aircraft, with three levels of uncertainties. For each
combination, 10 scenarios of aircraft converging to the center of the
considered airspace volume were randomly built, which is the most
penalizing situation for conflict resolution, as stated in [Durand,
2004]. For each scenario, speeds are chosen from 384 kn to 576 kn
(i.e., 20% variation around a typical speed of 480 kn). The aircraft
initial positions are chosen on a 70 nmi radius circle and are noised
within a 20 nmi-side square. The initial heading is also noised with
a value chosen in [—1, 1] radians (~ £60°). Figure 3 illustrates this
geometry on an instance with four aircraft.

A total of 40 scenarios were built to compare the algorithms. For
each scenario, three levels of uncertainty are defined. The lower level
of uncertainty ¢, takes into account ¢, = 1% of error on the aircraft
speed, &g = 1 nmi of error on the location of the turning point, ¢, = 1°
on the angle of the turn and ¢; = 1 nmi of error on the location of the
returning point. The medium level of uncertainty ¢,,.q doubles every
value: ¢, = 2%, ¢g = 2 nmi, ¢, = 2° and ¢; = 2 nmi. Finally, the higher
level of uncertainty epign triples the lower uncertainty values: ¢; = 3%,
& = 3 nmi, ¢, = 3° and ¢; = 3 nmi. 120 scenarios are thus built as a
proposed benchmark basis and we next detail how conflict are detected
to complete the framework description.

Conflict Detection

Once the trajectory predictions computed and stored, the 4D conflict
matrix C can be built. To simplify the access to the matrix and reduce
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Figure 3. Geometry of the conflict scenario generation (with four aircraft).

the number of combinations to the useful ones (e.g. only one possible
maneuver for « = 0), the three decision variables d,, « and d; are
aggregated in a single decision variable by a bijection from the allowed
triples to interval [1, ny,.,]. Then, for each pair of aircraft (i,j) and each
pair of maneuver options (k,/) (where k& is a maneuver option for air-
craft i and [ for aircraft j), we test if maneuvers 2 and ! generate
a conflict. In this case, C;;.; = 1 (i.e. true), otherwise C, ;. ; =
0 (i.e. false). Furthermore, the matrix is symmetric along its two first
dimensions, since a conflict between i and j is equivalent to a conflict
between j and i, so we only consider pairs of aircraft such that i < ;.

To detect a conflict, the distance between the two envelopes
representing the possible positions of aircraft ; and j is computed
and compared to the standard separation norm (5 nmi). For every
time step, the algorithm is divided in three stages:

1. Check if a vertex of convex hull % is inside convex hull /, or if a
vertex of convex hull / is inside convex hull k.

2. Otherwise, check if two edges of convex hulls £ and [ intersect.

3. Otherwise, check the distance between every vertex of convex hull
k and every edge of convex hull /, or every vertex of convex hull /
with every edge of convex hull k. As soon as one of the distances is
smaller than the separation standard, C; ;;; is set to 1.

This calculation is the most time consuming of the problem
generation because the number of pairs tested is big. For example,
a 20-aircraft conflict with 151 maneuvers per aircraft generates
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20219 — 190 pairs of aircraft for which 151% = 22, 801 pair of maneu-
vers must be tested. A total of 4, 332, 190 pairs of maneuvers must
be tested to build the conflict matrix.

This operation, however, can be parallelized very easily. For
instance, different processors can be used to test different pairs of
maneuvers. Thus, the computation time can be reduced drastically.
We give different examples in section 5 of the time required to com-
pute C,;; as a function of the number of processors. Furthermore,
sweep-line techniques [de Berg et al., 1998] could be used to lower the
time complexity of the edge intersection checks performed during the
second step of our convex hull distance algorithm. Eventually, a pre-
liminary filtering by approximating the envelopes with simple
enclosing boxes can spare many convex hull intersection checks.

Now that our framework is equipped with all the necessary pre-
computed data needed to implement a conflict solver independently of
the trajectory generation or the conflict detection, we describe two
different approaches to solve the conflict scenarios of the proposed
benchmark in the next section.

CONFLICT RESOLUTION

In this section, we propose two methods to resolve the conflict scenar-
ios generated with our benchmark framework. The first one, an Evo-
lutionary Algorithm, is a metaheuristic that mimics natural evolution
to explore the search space. The second one, Constraint Programming,
is based on an efficient systematic search of the solution space, which
proves the optimality (or the absence) of a solution.

Evolutionary Algorithm

Principles. Our Evolutionary Algorithm (EA), described in algo-
rithm 1, follows classical Evolutionary Computation principles
[Goldberg, 1989, Michalewicz, 1992].

First, a population of points in the state space is randomly gener-
ated. Then, we compute for each population element the value of the

Algorithm 1 Evolutionary algorithm (EA)

: Initialize population

: while termination criterion is not met do

: Evaluate raw fitness of population elements

: Apply scaling and sharing operations on raw fitness
: Select new population w.r.t. new fitness criterion

: Replace some elements by mutation and crossover

: end while

: Return best elements of population

00 10 Ui LN =
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function to optimize, which is called fitness. In a second step, we select!
the best individuals in the population according to their fitness. After-
wards, we randomly apply classical evolutionary operators, i.e. cross-
over and mutation, to diversify the population (they are applied with
respective probabilities P, and P,,,). At this step a new population has
been created and we apply the process again in an iterative way.

Sharing Improvement. Our problem is very combinatorial and
may have many different optimal solutions.? To find most of these
solutions and to avoid local optima, the sharing process introduced
by Yin and Germay [Yin and Germay, 1993] is used. This improve-
ment can be computed efficiently in ®(p log p) time complexity
(instead of @(p?) for the classical sharing process), where p is the
size of the population.

A sharing process requires the definition of a distance between two
chromosomes (two trajectory sets) to group alike population elements
in the same cluster, according to a threshold parameter controlling
the size and number of clusters. For the sake of simplicity, the dis-
tance implemented in our EA returns only two values: true if the
elements (set of trajectories) are identical and false if otherwise. The
fitness of elements belonging to the same cluster is then divided by
the size of the cluster to avoid an over-representation of a particular
solution in the population and encourage diversification.

Fitness Function. The fitness function of our EA is very basic and
does not aim at taking into account fuel consumption or controllers’
preferences. We just focus on finding a conflict- free set of heading
changes starting as late as possible, with the smallest deviation
length and heading change.

The fitness function is then defined by two cases, depending on the
presence (first case) or absence (second case) of remaining conflicts in
the solution:

1 if 3(i,7),i <J,Ciim,m, # 0
2+ E Cijmim ) e
F = i<Jj
1 1 V)i < Co 0
2 1 COSt l?.] 7l J? 1J,m;,m;

where cost, defined by equation 3 in section 2.3, represents the cost
of a solution.

1Selection aims at reproducing better individuals according to their fitness. We tried two kinds
of selection process, “Roulette Wheel Selection” and ”Stochastic Remainder Without Replacement
Selection” (described in [Goldberg, 1989] for example); the latter always works out better.
2Finding several solutions is very interesting because the controller may choose among several
options or negotiate them with pilots, keeping controllers and pilots alike in the decision
making process.
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Moreover, this fitness function guarantees that if a chromosome
value is larger than %, no conflict occurs, such that the cost of proper
solutions is strictly greater than the cost of conflicting ones. If a
conflict remains, the fitness does not take into account the cost of
the maneuvers, allowing the EA to focus the search for conflict-free
solutions first, regardless of the quality of the maneuvers involved.

Adapted Crossover and Mutation. EAs are very versatile
because they do not require much information on the objective func-
tion. Non-specific classical operators, however, used by Gruber,
Alliot, and Schoenauer in [Alliot et al., 1993] did not produce satis-
factory results on our benchmark.

Nonetheless, in the case of the conflict resolution problem, we do
know many properties about the fitness function, and they can be
useful in creating adapted crossover and mutation operators. Durand,
Alliot and Noailles describe such operators in [Durand et al., 1994].

The crossover operator, tailored to benefit from the structure of
functions defined as a sum of positive terms, is described on figure 4.
After choosing two parents A and B, we compare the number of
conflicts remaining for both sets of maneuvers and choose the
maneuver from the parent having the smallest number of conflicts.
When both maneuvers generate the same number of conflicts, we
pick up randomly the maneuver from parent A and parent B.

The mutation operator is described on figure 5. After choosing a
chromosome, an aircraft is mutated (on figure 5, aircraft 4 is chosen).

parent A offspring parent B
Al > Bl Al Bl
Al Al
A2 B2
——
A3 4 /% B3| B3> A3
B3 B3
A4 .......... B4
as~Bs | asl e T Bs| Bs ~ AS
C=A50rB5

Figure 4. Adapted crossover operator.



NEW FRAMEWORK FOR SOLVING EN ROUTE CONFLICTS 13

conflict free Al Al
conflict free A2 A2
conflict free A3 A3

conflicting Ad| o | A4| new maneuver

conflict free A5 A5

Figure 5. Adapted mutation operator.

Maneuvers generating conflicts for the parent are chosen in priority
and changed to favor conflict-free maneuvers in the offspring.

These operators are more deterministic at the beginning of the
optimization, when many conflicts remain in the population, so that a
solution without conflict can be found quickly. When conflict-free solu-
tions become sufficiently numerous, more randomness is allowed, and
other parts of the search space can be explored.

Constraint Programming

Constraint Programming (CP) is a versatile optimization technology
based on the Constraint Satisfaction Problem (CSP) formalism that
emphasizes the satisfaction of combinatorial constraints (i.e., arbi-
trary relations over a set of decision variables). CP offers a clean
separation between the modeling language and the resolution algo-
rithms, enabling to develop solvers quickly and incrementally and to
experiment with various search strategies without changing the
model. See [Van Hentenryck, 1995] for example, where more details
on the CP technology can be found.

CSP Model. The set M of decision variables of the CSP is the one
defined by equation 1, where each variable m; is the index of the
maneuver for aircraft ; and, thus, takes a value in [1, 7yanl.

The constraints are expressed as binary constraints, i.e., constraints
involving exactly two variables. For a given couple of aircrafti andj (i <
J), the constraint c;; between variables m; and m; is defined as the set:

cij = {(mf’,mj) st. Cijri= 1} (4)

where m* and m! are respectively the k-th and the [-th value of
interval [1, nmanl of the maneuvers available for aircraft i and j. c;;
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therefore describes all couples of maneuvers that cannot be per-
formed by aircraft i and j without resulting in a conflict.

We denote by Ic;;| the cardinal of the constraint c;;, i.e. the number
of forbidden couples of maneuvers.

Solution Search. The exploration of the search space is based on
an enhanced version of a systematic tree-search algorithm called
backtracking, where an inference phase prunes the unfeasible values
of each variable at every node of the tree by propagating local consis-
tency properties in the constraint network. In our algorithm, the
search tree is explored by following the weighted degree [Boussemart
et al., 2004] adaptive heuristic which learns from the failures during
the search, so that the variables involved in the constraints that have
been violated the most so far are instantiated first. This heuristic
proved to be particularly efficient on this problem, as it dynamically
focuses on the hardest parts of the CSP first.

Optimization. The optimization criterion ¢ simply is the sum of
the costs of each single maneuver as defined in equation 3. The
optimization algorithm used to solve the CSP is an adaptation of
the backtracking algorithm called branch and bound: each time a
solution with cost ¢, is found, the constraint ¢ < ¢, is dynamically
added to the CP model, and the search is resumed to look for a
better solution.

Eventually, the search for a better solution will fail, proving that
the best solution so far was optimal (or, if no solution has been previ-
ously found, that there is no solution satisfying all the constraints).
To quickly obtain solutions of good quality, which is mandatory in an
operational real-time context, our search strategy first focused on
maneuvers that least increase the cost.

RESULTS

The benchmark generation and the two conflict resolution algo-
rithms were implemented, using the FaCiLe [Barnier and Brisset,
2001] constraint library for the CP model. The following results
were obtained on a standard workstation consisting of an octo-core
Intel® Xeon® processor running at 3.4 GHz and equipped with 8 GB
of memory.

Benchmark

A total of 120 instances were produced, based on situations with 5,
10, 15 and 20 aircraft in the same airspace volume and with uncer-
tainty levels 1, 2 and 3, thus changing the density of the problem. Ten
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Figure 6. Benchmark generation time w.r.t. number of processors. The horizontal
scale is logarithmic.

random instances were created for each set of parameters, in order to
assess the reliability of the resolution algorithms.

The generation of a given instance is highly parallelizable (the
computation of the constraint between two given aircraft is indepen-
dent from other constraints in the problem), which made it possible to
dramatically reduce the needed computation time. As an example,
the biggest and hardest instances (20 aircraft with high uncertainty
level) were produced in less than three minutes while the smallest
ones only needed a few seconds.

Figure 6 shows the influence of the number of processors used on
the benchmark generation time for a given instance. The time saving
is quite huge, since only 10 seconds are necessary with 64 processors
where it took more than 9 minutes to a single processor. The gain,
however, becomes less interesting when the number of processors
further increases, because the communication overhead between
processes then takes a significant amount of time. For the type of
instances we generated, 16 processors seemed to constitute a fair
compromise.

Conflict Resolution

The resolution algorithms were both limited to a 5 minutes execution
time, to be compatible with the time constraints of an operational
setting. In this context, all feasible instances were solved within
seconds, and an optimality proof was obtained for most of them.
Figure 7 shows a solution for a 10-aircraft conflict.
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Figure 7. A solution to a 10-aircraft conflict. Trajectories are depicted as sequences

of convex hulls, representing the uncertainty.

Computing Times.

In more details, table 1 provides the computa-

tion times (averaged over the 10 different instances for each set of
parameters) for finding the best solution. Instances with 5 and 10 air-
craft are efficiently solved (under one second) by both algorithms (CP
being a bit faster than EA). Most 15-aircraft instances are solved
within one minute, while 20-aircraft instances often need a few
minutes. Moreover, a proof of optimality is obtained (with CP only)
on all instances with 5 and 10 aircraft and almost all instances with

Table 1. Average time (in seconds) for Finding Best Solution with EA and

CP Algorithms for Each Set of Parameters

n
5 10 15
CP EA CP EA CP EA CP EA
Elow 0.00 0.02 0.22 0.97 24.08 2.01 75.14 95.98
Emed 0.00 0.02 0.27 1.44 45.17 32.60 79.61 184.61
Ehigh 0.00 0.02 1.04 0.37 48.59 93.19 58.44 274.16
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15 aircraft. When 20 aircraft are involved, however, optimality proof
is not reached within the five minutes time limit.

Particularly interesting is the fact that, for instances that do not
have any solution, a proof of non-feasibility is obtained within one
second. This could make it possible to generate, in a real-time setting,
a new instance where, for the same situation, more maneuvers would
be allowed, hopefully giving a resolution to the conflicting situation.

Finally, in almost all instances, including the toughest ones, a first
solution was found within seconds. This means that in a real-time
operational context, it could be possible to provide the controllers
quickly with a first set of maneuvers that solves the conflict, so that
it could be their choice to transmit them right away or wait for a more
efficient solution, depending on their current workload and the
urgency of the situation.

Cost of Solutions. Table 2 provides average costs for each set of
parameters. According to the definition given in equation 2 each
maneuver has a cost belonging to the interval [0, 50] for the investi-
gated instances. As expected, the cost increases with the number of
aircraft involved, because the density of aircraft and conflicts in-
creases with this parameter for a given constant airspace volume.
The maneuver cost per aircraft varies from less than 1 for the
smallest instances to 15 for the hardest ones.

Figure 8 depicts the cost of the best solution found with respect to
the intrinsic difficulty p of the instance. The intrinsic difficulty is
here defined as the total number of forbidden couples of maneuvers:

p= > leil
ije[1n)?
i<j
where c;; is the constraint between aircraft i and j, as defined in
equation 4. Clearly, the cost of the best solutions is closely correlated
to the intrinsic difficulty of the problem, which could be used a priori
to determine the expected efficiency of resolution.

Table 2. Average cost of best solutions for each set of parameters. 2-in-1 cells
correspond to sets of parameters where both CP and EA reached optimal
solution. For n = 15 and n = 20, results include solutions that were not
proved optimal

n
5 10 15 20
CP EA CP EA Cp EA CP EA
Elow 5.3 29.8 86.3 86.8 185.8 176.9
Emed 4.2 46.6 104.0 104.0 267.6 282.8

£high 5.1 45.7 170.4 156.3 299.0 305.0
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Figure 8. Cost of the best solution found w.r.t. the intrinsic difficulty p of
the instance.

In terms of cost, CP and EA are equivalently efficient: they both
reach optimal solutions for almost all instances involving 15 or
less aircraft, and alternately give the best solution for 20-aircraft
instances. It would therefore be interesting to run both algorithms
in parallel for a given instance, to get the best possible solution.

CONCLUSION AND FURTHER WORK

We have presented a new benchmark framework for generating and
solving air traffic conflict resolution problems with many configura-
tion opportunities. Unlike other previous approaches, we have pro-
posed to separate the generation of instances from their resolution,
giving the possibility to easily test different algorithms for solution
search and optimization.

The production of the benchmark is highly configurable: the den-
sity of the conflict (controlled by the number of aircraft involved or
the volume of the considered airspace), the number of authorized
maneuvers and the level of uncertainty to be taken into account are
the main parameters, but the tuning can be even finer, e.g., with the
possibility of defining custom maneuvers or trajectory uncertainties.
The output is a data file containing all pre-computed trajectories and
a list of maneuvers pairs that cannot be performed simultaneously.
As this phase is highly parallelizable, this method can be used to
generate an entire benchmark database within a reasonable compu-
tation time.
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To illustrate the usefulness of our benchmark framework, we have
also described two different approaches to solve the generated conflict
problems, an Evolutionary Algorithm and a Constraint Program, and
have shown how to compare their results fairly on the 120 instances of
various difficulties of our proposed benchmark basis. Most of these
instances were solved in less than one second, the hardest ones need-
ing a few minutes of computation. With the CP algorithm, optimality
proofs were obtained in most cases, and instances without solution
were proved inconsistent within one second. As expected, the cost of
the solutions, i.e., the sum of maneuver costs defined in the conflict
data, increases with the intrinsic difficulty of the instance, defined as
the overall amount of forbidden maneuver pairs.

We plan to extend our approach to consider vertical maneuvers,
like a flight level change, interrupted climb or anticipated descent,
thus increasing the configurability and generality of the framework.
In terms of efficiency, the detection phase could be enhanced by the
use of a fastest algorithm for computing distances between the con-
vex hulls that model the uncertainties.

The realism of the instances can be greatly improved by integrat-
ing the conflict generation into our fast-time simulation platform
CATS (or other third-party simulators), to extract the conflicting
situations from the simulated traffic. This would also make it possi-
ble to test resolution algorithms in a fast-time simulation setting over
a whole day of traffic.

Finally, we are currently working on yet other algorithms for the
conflict resolution problem, such as an ad hoc branch and bound and
a Tabu Search, and their hybridization to increase the efficiency and
the robustness of the resolution.

ACRONYMS

FMS Flight Management Systems
BADA Base of Aircraft Data

EA Evolutionary Algorithm

CP Constraint Programming

CSP Constraint Satisfaction Problem

CATS Complete Air Traffic Simulator
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