Knowledge Discovery in Graphs Through Vertex Separation - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2017

Knowledge Discovery in Graphs Through Vertex Separation

(1, 2) , (1) , (3) , (1)
1
2
3

Résumé

This paper presents our ongoing work on the Vertex Separator Problem (VSP), and its application to knowledge discovery in graphs representing real data. The classic VSP is modeled as an integer linear program. We propose several variants to adapt this model to graphs with various properties. To evaluate the relevance of our approach on real data, we created two graphs of different size from the IMDb database. The model was applied to the separation of these graphs. The results demonstrate how the model is able to semantically separate graphs into clusters.
Fichier principal
Vignette du fichier
vsp-cai2017.pdf (483.11 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01521890 , version 1 (18-05-2017)

Identifiants

Citer

Marc Sarfati, Marc Queudot, Catherine Mancel, Marie-Jean Meurs. Knowledge Discovery in Graphs Through Vertex Separation. AI 2017, 30th Canadian Conference on Artificial Intelligence, May 2017, Edmonton, Canada. pp 203-214, ⟨10.1007/978-3-319-57351-9_25⟩. ⟨hal-01521890⟩
167 Consultations
226 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More