Knowledge Discovery in Graphs Through Vertex Separation

Abstract : This paper presents our ongoing work on the Vertex Separator Problem (VSP), and its application to knowledge discovery in graphs representing real data. The classic VSP is modeled as an integer linear program. We propose several variants to adapt this model to graphs with various properties. To evaluate the relevance of our approach on real data, we created two graphs of different size from the IMDb database. The model was applied to the separation of these graphs. The results demonstrate how the model is able to semantically separate graphs into clusters.
Type de document :
Chapitre d'ouvrage
Canadian Conference on Artificial Intelligence AI 2017: Advances in Artificial Intelligence , 10233, Springer, pp 203-214, 2017, Lecture Notes in Computer Science, 978-3-319-57350-2. 〈10.1007/978-3-319-57351-9_25〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-01521890
Contributeur : Laurence Porte <>
Soumis le : jeudi 18 mai 2017 - 11:53:23
Dernière modification le : vendredi 19 mai 2017 - 15:38:04

Fichier

vsp-cai2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Marc Sarfati, Marc Queudot, Catherine Mancel, Marie-Jean Meurs. Knowledge Discovery in Graphs Through Vertex Separation. Canadian Conference on Artificial Intelligence AI 2017: Advances in Artificial Intelligence , 10233, Springer, pp 203-214, 2017, Lecture Notes in Computer Science, 978-3-319-57350-2. 〈10.1007/978-3-319-57351-9_25〉. 〈hal-01521890〉

Partager

Métriques

Consultations de la notice

55

Téléchargements de fichiers

25