Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

FFTEB: Edge Bundling of Huge Graphs by the Fast Fourier Transform

Abstract : Edge bundling techniques provide a visual simplification of cluttered \ graph drawings or trail sets. While many bundling techniques exist, \ only few recent ones can handle large datasets and also allow selective \ bundling based on edge attributes. We present a new technique \ that improves on both above points, in terms of increasing both the \ scalability and computational speed of bundling, while keeping the \ quality of the results on par with state-of-the-art techniques. For \ this, we shift the bundling process from the image space to the spectral \ (frequency) space, thereby increasing computational speed. We \ address scalability by proposing a data streaming process that allows \ bundling of extremely large datasets with limited GPU memory. \ We demonstrate our technique on several real-world datasets \ and by comparing it with state-of-the-art bundling methods.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [41 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-01533755
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : mardi 18 juillet 2017 - 10:05:37
Dernière modification le : mercredi 3 novembre 2021 - 05:38:41
Archivage à long terme le : : samedi 27 janvier 2018 - 06:11:34

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Antoine Lhuillier, Christophe Hurter, Alexandru C Telea. FFTEB: Edge Bundling of Huge Graphs by the Fast Fourier Transform. PacificVis 2017, 10th IEEE Pacific Visualization Symposium, Apr 2017, Seoul, South Korea. ⟨10.1109/PACIFICVIS.2017.8031594⟩. ⟨hal-01533755⟩

Partager

Métriques

Consultations de la notice

159

Téléchargements de fichiers

659