Multidimensional Data Exploration by Explicitly Controlled Animation

Abstract : Understanding large multidimensional datasets is one of the most challenging problems in visual data exploration. One key challenge that increases the size of the exploration space is the number of views that one can generate from a single dataset, based on the use of multiple parameter values and exploration paths. Often, no such single view contains all needed insights. The question thus arises of how we can efficiently combine insights from multiple views of a dataset. We propose a set of techniques that considerably reduce the exploration effort for such situations, based on the explicit depiction of the view space, using a small multiple metaphor. We leverage this view space by offering interactive techniques that enable users to explicitly create, visualize, and follow their exploration path. This way, partial insights obtained from each view can be efficiently and effectively combined. We demonstrate our approach by applications using real-world datasets from air traffic control, software maintenance, and machine learning
Type de document :
Article dans une revue
Informatics, MDPI, 2017, 4 (26), 〈10.3390/informatics4030026〉
Liste complète des métadonnées

Littérature citée [65 références]  Voir  Masquer  Télécharger
Contributeur : Laurence Porte <>
Soumis le : lundi 28 août 2017 - 11:27:23
Dernière modification le : lundi 10 décembre 2018 - 16:58:14


Publication financée par une institution




Johannes Kruiger, Almoctar Hassoumi, Hans-Jörg Schulz, Alexandru Telea, Christophe Hurter. Multidimensional Data Exploration by Explicitly Controlled Animation. Informatics, MDPI, 2017, 4 (26), 〈10.3390/informatics4030026〉. 〈hal-01577836〉



Consultations de la notice


Téléchargements de fichiers