Multidimensional Data Exploration by Explicitly Controlled Animation - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Informatics Année : 2017

Multidimensional Data Exploration by Explicitly Controlled Animation

(1) , (2) , (3) , (4) , (2)
1
2
3
4

Résumé

Understanding large multidimensional datasets is one of the most challenging problems in visual data exploration. One key challenge that increases the size of the exploration space is the number of views that one can generate from a single dataset, based on the use of multiple parameter values and exploration paths. Often, no such single view contains all needed insights. The question thus arises of how we can efficiently combine insights from multiple views of a dataset. We propose a set of techniques that considerably reduce the exploration effort for such situations, based on the explicit depiction of the view space, using a small multiple metaphor. We leverage this view space by offering interactive techniques that enable users to explicitly create, visualize, and follow their exploration path. This way, partial insights obtained from each view can be efficiently and effectively combined. We demonstrate our approach by applications using real-world datasets from air traffic control, software maintenance, and machine learning
Fichier principal
Vignette du fichier
informatics-04-00026.pdf (6.35 Mo) Télécharger le fichier
Origine : Publication financée par une institution
Loading...

Dates et versions

hal-01577836 , version 1 (28-08-2017)

Identifiants

Citer

Johannes F Kruiger, Almoctar Hassoumi, Hans-Jörg Schulz, Alexandru C Telea, Christophe Hurter. Multidimensional Data Exploration by Explicitly Controlled Animation. Informatics, 2017, 4 (26), ⟨10.3390/informatics4030026⟩. ⟨hal-01577836⟩

Collections

ENAC DEVI
162 Consultations
278 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More