J. C. Maxwell, A Treatise on Electricity and Magnetism, 1904.
DOI : 10.1017/cbo9780511709333

URL : http://www.e-rara.ch/download/pdf/2506524?name=Vol.%25201

S. U. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Proceedings of the ASME International Mechanical Engineering Congress & Exposition, pp.12-17, 1995.

J. Eastman, U. Choi, S. Li, L. Thompson, and S. Lee, Enhanced Thermal Conductivity through the Development of Nanofluids, MRS Online Proc. Libr. Arch, pp.10-1557, 1996.
DOI : 10.1063/1.322870

M. S. Liu, M. C. Lin, I. T. Huang, and C. C. Wang, Enhancement of Thermal Conductivity with CuO for Nanofluids, Chemical Engineering & Technology, vol.335, issue.1, pp.72-77, 2006.
DOI : 10.1002/ceat.200500184

Y. Hwang, H. Park, J. Lee, and W. Jung, Thermal conductivity and lubrication characteristics of nanofluids, Current Applied Physics, vol.6, pp.67-71, 2006.
DOI : 10.1016/j.cap.2006.01.014

W. Yu, H. Xie, L. Chen, and Y. Li, Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid, Thermochimica Acta, vol.491, issue.1-2, pp.92-96, 2009.
DOI : 10.1016/j.tca.2009.03.007

H. A. Mintsa, G. Roy, C. T. Nguyen, and D. Doucet, New temperature dependent thermal conductivity data for water-based nanofluids, International Journal of Thermal Sciences, vol.48, issue.2, pp.363-371, 2009.
DOI : 10.1016/j.ijthermalsci.2008.03.009

P. Verma, P. Chaturvedi, J. S. Rawat, M. Kumar, S. Pal et al., Elimination of current non-uniformity in carbon nanotube field emitters, Journal of Materials Science: Materials in Electronics, vol.383, issue.2, pp.677-680, 2007.
DOI : 10.1007/s10854-006-9079-2

J. Xu, J. Zhang, Y. Du, X. Zhang, and Y. Li, Ultrasonic velocity and attenuation in nano-structured Zn materials, Materials Letters, vol.29, issue.1-3, pp.131-134, 1996.
DOI : 10.1016/S0167-577X(96)00130-9

J. A. Eastman, S. Choi, S. Li, W. Yu, and L. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied Physics Letters, vol.7, issue.6, pp.718-720, 2001.
DOI : 10.1088/0022-3735/14/12/020

N. Bondareva, M. A. Sheremet, and I. Pop, Magnetic field effect on the unsteady natural convection in a right-angle trapezoidal cavity filled with a nanofluid, International Journal of Numerical Methods for Heat & Fluid Flow, vol.25, issue.8, pp.1924-1946, 2015.
DOI : 10.1504/PCFD.2009.023351

M. A. Sheremet and I. Pop, Natural Convection in a Wavy Porous Cavity With Sinusoidal Temperature Distributions on Both Side Walls Filled With a Nanofluid: Buongiorno's Mathematical Model, Journal of Heat Transfer, vol.137, issue.7, p.72601, 2015.
DOI : 10.1115/1.4029816

E. Baskaya, M. Fidanoglu, G. Komurgoz, and I. Ozkol, Investigation of MHD Natural Convection Flow Exposed to Constant Magnetic Field via Generalized Differential Quadrature Method, Volume 2: Dynamics, Vibration and Control; Energy; Fluids Engineering; Micro and Nano Manufacturing, pp.25-27, 2014.
DOI : 10.1115/ESDA2014-20177

S. P. Jang and S. Choi, Effects of Various Parameters on Nanofluid Thermal Conductivity, Journal of Heat Transfer, vol.129, issue.5, pp.617-623, 2006.
DOI : 10.1115/1.2712475

A. Nacev, Magnetic Drug Targeting: Developing the Basics

M. Arruebo, R. Fernandez-pacheco, M. R. Ibarra, and J. Santamaria, Magnetic nanoparticles for drug delivery, Nano Today, vol.2, issue.3, pp.22-32, 2007.
DOI : 10.1016/S1748-0132(07)70084-1

Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Obson, Applications of magnetic nanoparticles in biomedicine, Journal of Physics D: Applied Physics, vol.36, issue.13, p.167, 2003.
DOI : 10.1088/0022-3727/36/13/201

Q. A. Pankhurst, N. K. Thanh, S. K. Jones, and J. Obson, Progress in applications of magnetic nanoparticles in biomedicine, Journal of Physics D: Applied Physics, vol.42, issue.22, 2009.
DOI : 10.1088/0022-3727/42/22/224001

A. S. Lubbe, C. Bergemann, H. Riess, F. Schriever, P. Reichardt et al., Clinical experiences with magnetic drug targeting: A phase I study with 4-epidoxorubicin in 14 patients with advanced solid tumors, Cancer Res, vol.56, pp.4686-4693, 1996.

J. Obson, Magnetic micro- and nano-particle-based targeting for drug and gene delivery, Nanomedicine, vol.1, issue.1, pp.31-37, 2006.
DOI : 10.2217/17435889.1.1.31

M. A. Sheremet, H. F. Oztop, and I. Pop, Analysis of Entropy Generation in Natural Convection of Nanofluid inside a Square Cavity Having Hot Solid Block: Tiwari and Das??? Model, Entropy, vol.18, issue.1, p.9, 2015.
DOI : 10.1016/j.energy.2014.11.036

N. Carnot, Reflexions Sur la Puissance Motrice du feu (In France), p.1824

R. Clausius, On a modified form of the second principal theorem of mechanical theory, Ann. Phys, vol.1854, issue.169, pp.481-506

R. Clausius, On various forms of the principal equations of mechanical theory, Ann. Phys, vol.1865, issue.201, pp.353-400

A. Bejan, Second law analysis in heat transfer. Energy Int, pp.721-732, 1980.
DOI : 10.1016/0360-5442(80)90091-2

A. Bejan, Entropy Generation Through Heat and Fluid Flow, Journal of Applied Mechanics, vol.50, issue.2, 1982.
DOI : 10.1115/1.3167072

A. Bejan, Second-law analysis in heat transfer and thermal design. Adv. Heat Transf, pp.1-58, 1982.
DOI : 10.1016/s0065-2717(08)70172-2

A. Bejan, Entropy Generation Minimization, 1995.
DOI : 10.1016/0017-9310(95)00196-4

A. Bejan, A Study of Entropy Generation in Fundamental Convective Heat Transfer, Journal of Heat Transfer, vol.101, issue.4, pp.718-725, 1979.
DOI : 10.1115/1.3451063

A. Bejan, G. Tsatsaronis, and M. Moran, Thermal Design and Optimization, 1996.

M. Roy, T. Basak, S. Roy, and I. Pop, Analysis of Entropy Generation for Mixed Convection in a Square Cavity for Various Thermal Boundary Conditions, Numerical Heat Transfer, Part A: Applications, vol.68, issue.1, pp.44-74, 2015.
DOI : 10.1021/ie102530u

S. Bhardwaj and A. Dalal, Effect of Undulations on the Natural Convection Heat Transfer and Entropy Generation Inside a Porous Right-Angled Triangular Enclosure, Numerical Heat Transfer, Part A: Applications, vol.67, issue.9, pp.972-991, 2015.
DOI : 10.1016/j.ijthermalsci.2010.04.022

Y. T. Yang, Y. H. Wang, H. Yi-hsien, and B. Huang, Numerical Optimization for Nanofluid Flow in Microchannels Using Entropy Generation Minimization, Numerical Heat Transfer, Part A: Applications, vol.67, issue.5, pp.571-588, 2015.
DOI : 10.1016/j.ijmultiphaseflow.2011.03.008

G. Komurgoz, A. Arikoglu, and E. Turker, Second-Law Analysis for an Inclined Channel Containing Porous-Clear Fluid Layers by Using the Differential Transform Method, Numerical Heat Transfer, Part A: Applications, vol.2, issue.8, pp.603-623, 2010.
DOI : 10.1016/S1290-0729(03)00040-1

H. Salas, S. Cuevas, and M. L. De-haro, Entropy generation analysis of magnetohydrodynamic induction devices, Journal of Physics D: Applied Physics, vol.32, issue.20, pp.2605-2608, 1999.
DOI : 10.1088/0022-3727/32/20/304

S. Mahmud, S. H. Tasnim, and M. A. Mamun, Thermodynamic analysis of mixed convection in a channel with??transverse hydromagnetic effect, International Journal of Thermal Sciences, vol.42, issue.8, pp.731-740, 2003.
DOI : 10.1016/S1290-0729(03)00040-1

D. S. Chauhan and V. Kumar, Heat transfer and entropy generation during compressible fluid flow in a channel partially filled with porous medium, Int. J. Energy Technol, vol.3, pp.1-10, 2011.

S. Tasnim, S. Mahmud, and M. Mamum, Entropy generation in a porous channel with hydromagetic effect, Int. J. Exergy, vol.3, pp.300-308, 2002.

A. S. Eegunjobi and O. D. Makinde, Combined Effect of Buoyancy Force and Navier Slip on Entropy Generation in a Vertical Porous Channel, Entropy, vol.3, issue.12, pp.1028-1044, 2012.
DOI : 10.1016/j.ijthermalsci.2010.08.011

E. Jery, A. Hidouri, N. Magherbi, M. Brahim, and A. B. , Effect of an External Oriented Magnetic Field on Entropy Generation in Natural Convection, Entropy, vol.19, issue.6, pp.1391-1417, 2010.
DOI : 10.1017/S0022112090003032

R. Dwivedi, S. P. Singh, and B. B. Singh, Analysis of incompressible viscous laminar flow through a channel filled with porous media, Int. J. Stab. Fluid Mech, vol.1, pp.127-134, 2010.

O. D. Makinde and T. Chinyoka, Numerical investigation of buoyancy effects on hydromagnetic unsteady flow through a porous channel with suction/injection, Journal of Mechanical Science and Technology, vol.26, issue.7, pp.1557-1568, 2013.
DOI : 10.1016/j.mechrescom.2010.02.007

K. Cramer and S. Pai, Magnetofluiddynamics for Engineers and Applied Plysicists, 1973.

G. S. Seth, M. S. Ansari, and R. Nandkeolyar, Unsteady Hydromagnetic Couette Flow within a porous Channel, Tamkang J. Sci. Eng, vol.14, pp.7-14, 2011.
DOI : 10.4314/ijest.v3i6.14

A. S. Eegunjobi and O. Makinde, Entropy Generation Analysis in a Variable Viscosity MHD Channel Flow with Permeable Walls and Convective Heating, Mathematical Problems in Engineering, vol.71, issue.4, p.630798, 2013.
DOI : 10.1016/j.compfluid.2012.11.011

S. Das and R. N. Jana, Entropy Generation in MHD Porous Channel Flow Under Constant Pressure Gradient, Appl. Math. Phys, vol.1, pp.78-89, 2013.

T. Hayat, S. Bibi, M. Rafiq, A. Alsaedi, and F. Abbasi, Effect of an inclined magnetic field on peristaltic flow of Williamson fluid in an inclined channel with convective conditions, Journal of Magnetism and Magnetic Materials, vol.401, pp.733-745, 2016.
DOI : 10.1016/j.jmmm.2015.10.107

Z. Mehrez, A. Cafsi, and A. Belghith, MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity, Journal of Magnetism and Magnetic Materials, vol.374, pp.214-224, 2015.
DOI : 10.1016/j.jmmm.2014.08.010

D. S. Cimpean and I. Pop, Fully developed mixed convection flow of a nanofluid through an inclined channel filled with a porous medium, International Journal of Heat and Mass Transfer, vol.55, issue.4, pp.907-914, 2012.
DOI : 10.1016/j.ijheatmasstransfer.2011.10.018

X. C. You and H. Xu, Analysis of Fully Developed Opposing Mixed Convection Flow in an Inclined Channel Filled by a Nanofluid, Journal of Heat Transfer, vol.136, issue.12, p.124502, 2014.
DOI : 10.1115/1.4028564

H. C. Brinkmann, The Viscosity of Concentrated Suspensions and Solutions, The Journal of Chemical Physics, vol.58, issue.4, pp.571-581, 1952.
DOI : 10.1007/BF01503023

R. E. Bellman and J. Casti, Differential quadrature and long-term integration, Journal of Mathematical Analysis and Applications, vol.34, issue.2, pp.235-238, 1971.
DOI : 10.1016/0022-247X(71)90110-7

URL : http://doi.org/10.1016/0022-247x(71)90110-7

C. Shu and B. E. Richards, High Resolution of Natural Convection in a Square Cavity by Generalized Differential Quadrature, Proceedings of the 3rd Conference on Advances in Numerical Methods in Engineering, 1990.

C. Shu, Differential Quadrature and Its Applications in Engineering, 2000.
DOI : 10.1007/978-1-4471-0407-0

L. C. Woods, Thermodynamics of Fluid Systems, 1975.

E. Ba¸skayaba¸skaya, G. Kömürgöz, and I. Özkol, Analysis of Variable Viscosity Channel Flow under Constant Magnetic Field via Generalized Differential Quadrature Method, In Advanced Materials Research, 2014.