R. Mogford, J. A. Guttman, S. L. Morrow, and P. Kopardekar, The complexity construct in air traffic control: A review and synthesis of the literature, 1995.

P. Kopardekar, Dynamic density: A review of proposed variables. FAA WJHTC internal document. overall conclusions and recommendations, Federal Aviation Administration, 2000.

B. Hilburn, Cognitive complexity in air traffic control, a litterature review, Eurocontrol experimental centre, 2004.

I. V. Laudeman, S. G. Shelden, R. Branstrom, and C. L. Brasil, Dynamic density: An air traffic management metric, 1999.

A. Majumdar, W. Y. Ochieng, G. Mcauley, J. M. Lenzi, and C. Lepadetu, The Factors Affecting Airspace Capacity in Europe: A Cross-Sectional Time-Series Analysis Using Simulated Controller Workload Data, Proceedings of the 6th USA/Europe Air Traffic Management R & D Seminar, 2005.
DOI : 10.1017/S0373463304002863

J. H. Crump, Review of stress in air traffic control: Its measurement and effects. Aviation, Space and Environmental Medecice, 1979.

P. Averty, S. Athènes, C. Collet, and A. Dittmar, Evaluating a new index of mental workload in real ATC situation using psychological measures, 2002.

C. Martin, J. Cegarra, and P. Averty, Analysis of Mental Workload during En-route Air Traffic Control Task Execution Based on Eye-Tracking Technique, International Conference on Engineering Psychology and Cognitive Ergonomics, pp.592-597, 2011.
DOI : 10.1016/j.apergo.2009.02.005

P. Kopardekar and S. Magyarits, Measurement and prediction of dynamic density, Proceedings of the 5th USA/Europe Air Traffic Management R & D Seminar, 2003.

G. B. Chatterji and B. Sridhar, Measures for air traffic controller workload prediction, 1st AIAA, Aircraft, Technology Integration, and Operations Forum, 2001.
DOI : 10.1080/00140137808931772

C. Mannings, S. Mill, C. Fox, E. Pfleiderer, and H. Mogilka, The Relationship between Air Traffic Control Communication Events and Measures of Controller Taskload and Workload, Proceedings of the 4th Air Traffic Management Research & Developpment Seminar, 2001.
DOI : 10.1207/s15327108ijap0702_5

D. Gianazza and K. Guittet, Evaluation of air traffic complexity metrics using neural networks and sector status, Proceedings of the 2nd International Conference on Research in Air Transportation. ICRAT, 2006.
DOI : 10.1109/dasc.2006.313710

URL : https://hal.archives-ouvertes.fr/hal-00938105

D. Gianazza and K. Guittet, Selection and Evaluation of Air Traffic Complexity Metrics, 2006 ieee/aiaa 25TH Digital Avionics Systems Conference, 2006.
DOI : 10.1109/DASC.2006.313710

URL : https://hal.archives-ouvertes.fr/hal-00938180

D. Gianazza, Smoothed traffic complexity metrics for airspace configuration schedules, Proceedings of the 3nd International Conference on Research in Air Transportation. ICRAT, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01020711

G. Flynn, R. Benkouar, and . Christien, Adaptation of workload model by optimisation algorithms, 2005.

D. Jerry, . Welch, W. John, . Andrews, D. Brian et al., Macroscopic workload model for estimating en route sector capacity

B. Sridhar, K. S. Sheth, and S. Grabbe, Airspace complexity and its application in air traffic management, Proceedings of the 2nd USA/Europe Air trafic Management R&D Seminar

D. Gianazza, C. Allignol, and N. Saporito, An efficient airspace configuration forecast, Proceedings of the 8th USA, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01020720

D. Gianazza, Forecasting workload and airspace configuration with neural networks and tree search methods, Artificial Intelligence, vol.174, issue.7-8, pp.530-549, 2010.
DOI : 10.1016/j.artint.2010.03.001

URL : https://hal.archives-ouvertes.fr/hal-01020725

N. Saporito, C. Hurter, D. Gianazza, and G. Beboux, A participatory design for the visualization of airspace configuration forecasts, Proceedings of the 4th International Conference on Research in Air Transportation, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00938480

G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical learning, 2013.
DOI : 10.1007/978-1-4614-7138-7

T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning. Springer Series in Statistics, 2001.

M. Christopher and . Bishop, Pattern recognition and machine learning, 2006.

H. Jerome and . Friedman, Greedy function approximation: a gradient boosting machine, Annals of statistics, pp.1189-1232, 2001.

H. Jerome and . Friedman, Stochastic gradient boosting, Computational Statistics & Data Analysis, vol.38, issue.4, pp.367-378, 2002.

L. Breiman, J. Friedman, J. Charles, . Stone, A. Richard et al., Classification and regression trees, 1984.

G. Ridgeway, Generalized boosted models: A guide to the gbm package URL http://cran. open-source-solution, 2007.

D. Gianazza, Airspace configuration using air traffic complexity metrics, Proceedings of the 7 th USA/Europe Seminar on Air Traffic Management Research and Development, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00938172