Trajectory Mathematical Distance Applied to Airspace Major Flows Extraction

Abstract : In this paper, the problem of aircraft trajectories representation and analysis is addressed. In many operational situations, there is a need to have a value expressing how trajectories are close to each other. Some measures have been previously defined, mainly for trajectory prediction applications, all of them being based on distance computations at given positions in space and time. The approach presented here is to consider the trajectory as a whole object belonging to a functional space and to perform all computations in this space. An efficient algorithm for computing mathematical distance between trajectories is then presented and applied to the major flows extraction in the French airspace.
Type de document :
Communication dans un congrès
EIWAC 2017 The 5th ENRI International Workshop on ATM/CNS, Nov 2017, Tokyo, Japan. Springer, Lecture Notes in Electrical Engineering, 2018, Air Traffic Management and Systems III
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-01598864
Contributeur : Laurence Porte <>
Soumis le : samedi 18 novembre 2017 - 18:45:16
Dernière modification le : lundi 11 juin 2018 - 11:14:13
Document(s) archivé(s) le : lundi 19 février 2018 - 12:26:18

Fichier

aiwac1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01598864, version 1

Collections

Citation

Daniel Delahaye, Stéphane Puechmorel, Sameer Alam, Eric Féron. Trajectory Mathematical Distance Applied to Airspace Major Flows Extraction. EIWAC 2017 The 5th ENRI International Workshop on ATM/CNS, Nov 2017, Tokyo, Japan. Springer, Lecture Notes in Electrical Engineering, 2018, Air Traffic Management and Systems III. 〈hal-01598864〉

Partager

Métriques

Consultations de la notice

105

Téléchargements de fichiers

50