
HAL Id: hal-01609328
https://enac.hal.science/hal-01609328

Submitted on 3 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feasibility pump for aircraft deconfliction with speed
regulation

Sonia Cafieri, Claudia d’Ambrosio

To cite this version:
Sonia Cafieri, Claudia d’Ambrosio. Feasibility pump for aircraft deconfliction with speed regulation.
Journal of Global Optimization, 2018, 71 (3), pp 501-515. �10.1007/s10898-017-0560-7�. �hal-01609328�

https://enac.hal.science/hal-01609328
https://hal.archives-ouvertes.fr

J Glob Optim
DOI 10.1007/s10898-017-0560-7

Feasibility pump for aircraft deconfliction with speed
regulation

Sonia Cafieri1 · Claudia D’Ambrosio2

Received: 24 January 2017 / Accepted: 20 August 2017
© Springer Science+Business Media, LLC 2017

Abstract We propose Feasibility Pump heuristics for the crucial problem of aircraft conflict
avoidance arising in air traffic management. This problem can be modeled as a mixed integer
nonlinear optimization problem, whose solution can be very computationally demanding.
Feasibility Pump is an iterative algorithm that, at each iteration, solves alternatively two easier
subproblems represented by relaxations of the original problem, minimizing the distance
between their solutions. We propose in this paper specific formulations for the subproblems
to be handled, tailored to the problem at hand. Numerical results show that, on the considered
test problems, good-quality, in some cases optimal, feasible solutions are always obtained.

Keywords Mixed integer nonlinear programming · Feasibility pump · Aircraft conflict
avoidance · Mathematical programming · Reformulations · Heuristic algorithm

1 Introduction

Aircraft conflict avoidance for en-route flights constitutes a prominent example of problem
that urgently needs to be addressed in Air Traffic Management (ATM) to ensure a higher
level of automation, and consequently more efficiency and safety in the current context of
growing air traffic on the world-scale.

Aircraft sharing the same airspace are said to be in conflictwhen they get too close to each
other during their flight, according to their predicted trajectories. More specifically, a conflict
is due to a loss of separation between aircraft, occurring when their relative horizontal and
vertical distances do not satisfy anymore two given safety-distance constraints. The problem

B Claudia D’Ambrosio
dambrosio@lix.polytechnique.fr

Sonia Cafieri
sonia.cafieri@enac.fr

1 Université de Toulouse, ENAC, 31055 Toulouse, France

2 LIX CNRS (UMR7161), École Polytechnique, 91128 Palaiseau Cedex, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-017-0560-7&domain=pdf
http://orcid.org/0000-0002-4578-8394
http://orcid.org/0000-0002-4040-0960

J Glob Optim

is then to identify a potential loss of separation between pairs of aircraft in amonitored portion
of the airspace, and to issue suitable separation maneuvers to provide a new, conflict-free,
aircraft configuration.

Aircraft conflict avoidance is naturallymodeled as an optimization problem, as one usually
seeks to separate aircraft by deviating as little as possible from their original flight plans,
i.e., minimizing the impact of the separation maneuvers on the flight efficiency. In this paper,
we focus on approaches based on mixed integer nonlinear programming (MINLP), that is
shown to be a powerful framework for aircraft conflict avoidance, and is attracting a growing
attention in recent years. An overview of MINLP modeling for aircraft conflict avoidance
is provided in [9]. Modeling is strictly dependent on the separation maneuvers chosen to
solve conflicts. The most common way to achieve separation by air traffic controllers is
based on aircraft heading angle deviations. Another, although less preferred, way, uses flight
level changes to separate aircraft. Conflict avoidance can also be performed through aircraft
velocity regulation. This kind of regulation can be carried out through a subliminal control,
promoted in recent years by the European aeronautical project ERASMUS [7], according
to which aircraft speeds should be modified only in a very small range (namely, from −6
to +3%) around the original speeds. A subliminal speed control is considered promising in
view of more automated ATM systems in a next future, thanks to its limited impact on the
workload of air traffic controllers. Therefore, in the present paper we consider this kind of
separation maneuver.

The first approaches based on mixed integer optimization date back to 2002. In [18,21],
a geometrical construction on aircraft trajectories to express aircraft separation leads to the
definition of Mixed Integer Linear Programming (MILP) models based on velocity changes
or heading angle changes. The work of Pallottino et al. [18] is more recently extended in
[1–3], where mixed integer linear and nonlinear models based on various aircraft separation
techniques are presented. Speed regulation maneuvers are recently used in [19,20], where a
space-discretization approach is used to represent aircraft trajectories and separation.MINLP
based on speed regulation is proposed in [10], that in this paper we consider as a reference
for modeling (see Sect. 2), [8], and, more recently, [11,12].

MINLP models for aircraft conflict avoidance are, for their nature, quite complex. The
complexity is mainly due to the pairwise nonlinear nonconvex separation constraints. This
makes exact solution algorithms very computationally demanding when the number of air-
craft considered simultaneously is large. In this context, it is interesting to obtain good quality
feasible solutions for the problem under consideration, or, on the contrary, to detect its infea-
sibility. This interest is twofold. First, as decision variables and constraints inMINLPmodels
for conflict avoidance depend on the aircraft maneuvers chosen to perform separation, get-
ting feasibility information with respect to the selected maneuvers may help to adjust the
mathematical model. Second, it is known that a good feasible solution provides a good upper
(in the case of a minimization problem) bound to be used as a cutoff value within a branch-
and-bound algorithm, and may also allow tighter bounds to be propagated through bound
tightening techniques. In this paper we focus on feasibility seeking in MINLP programs for
aircraft conflict avoidance. More specifically, the main contribution of this paper is repre-
sented by Feasibility Pump heuristics tailored to the problem of aircraft conflict avoidance.
Feasibility Pump [6,14] builds two sequences of points, one of NLP feasible solutions (i.e,
feasible for a continuous relaxation of the problem), and the other of solutions with integral
value for the integer variables (but possibly violating the constraints), and iterates until the
two sequences converge to a feasible solution of theMINLP. The two sequences are generated
by solving two subproblems obtained from the original MINLP. Starting from the general
framework of Feasibility Pump for MINLP, we propose specific formulations for the sub-

123

J Glob Optim

problems to be handled, tailored to the problem at hand. Moreover, we improve Feasibility
Pump so that, once it finds a first feasible solution, it tries to improve it thanks to a so-called
“optimality cut”.

The paper is organized as follows. In Sect. 2 we introduce the aircraft conflict avoidance
(deconfliction) problem and recall theMINLPmodel based on speed regulation due to Cafieri
and Durand [10]. Some improvements to this model based on preprocessing and reformula-
tions are proposed in Sect. 3. We present Feasibility Pump heuristics tailored to the specific
problem of interest in Sect. 4. In Sect. 5, we present and discuss the results of numerical
tests, validating the proposed approach. Section 6 concludes the papers with future research
directions.

2 The aircraft deconfliction problem with speed regulation

In this section we first describe in some more detail the problem under consideration, then
recall the mathematical program proposed by Cafieri and Durand [10], here used as reference
model.

Let us consider a portion of the airspace, monitored during a time window. We consider,
in particular, the case of en-route cruise flights, at a tactical level, i.e., potential conflicts are
resolved a few minutes before the loss of separation potentially occurs. We are given a set A
of aircraft, that are all at the same flight level, implying that only the horizontal separation
distance has to be considered for each pair of aircraft to ensure safety. Starting from a current
configuration, characterized by initial position (in 2-dimensional space), heading angle, and
speed for each aircraft, the problem consists in finding a new configuration that is conflict-free
along all the observed time window.

In our model, aircraft are allowed to change once their speed, in particular following the
subliminal control paradigm, while aircraft headings are kept fixed. Following [10], the main
decision variables are, for all i ∈ A, continuous variables qi , expressing the percentage of
speed variation of aircraft i . These variables are bounded for operational reasons and, when
subliminal speed control is applied, these bounds are very tight, as explained in Sect. 1. The
main constraints are represented by the pairwise aircraft separation constraints:

‖xi (t) − x j (t)‖ ≥ d ∀t ≥ 0, (i, j) ∈ B (1)

where xi (t) denotes the position of aircraft i at time t , d is the horizontal separation standard,
‖ · ‖ is the Euclidean norm, and the set B = {(i, j) | i ∈ A, j ∈ A, i < j} is introduced
for ease of notation. The model in [10] does not rely on any time discretization for the
above constraints and a reformulation is used instead. Assuming that uniform motion laws
apply, the position xi (t) is given by xi (t) = xi (0) + t vi qi , where both the initial position
xi (0) and velocity vi are known vectors, while variable qi represents the speed variation. By
substituting in (1) and squaring, the second-degree polynomial function t2‖vi qi −v j q j‖2 +
2t

(
vi qi − v j q j

) · x0i j + ‖x0i j‖2 is obtained (where x0i j is the relative position of aircraft i
with respect to aircraft j at time t = 0) which attains its minimum in [0,∞) at time instant

tmi j = − (
vi qi − v j q j

) · x0i j
‖vi qi − v j q j‖2 .

For all (i, j) ∈ B, variables tmi j are continuous variables of the problem, and the separation
constraints are reformulated as

‖vi qi − v j q j‖2(‖x0i j‖2 − d2) − (x0i j · (vi qi − v j q j))
2 ≥ 0 if tmi j ≥ 0. (2)

123

J Glob Optim

These constraints being piecewise-defined, a binary variable yi j , for each (i, j) ∈ B, is
introduced as

yi j =
{
1 if tmi j ≥ 0
0 otherwise

and constraints (2) are re-written accordingly as explained in the following.
Introducing for all (i, j) ∈ B (continuous) auxiliary variables pi j , representing the inner

product appearing in the separation constraint, andwi j , representing the square of the relative
velocity, the constraints of the problem can be summarized as follows:

– defining constraints for pi j and wi j , respectively linear and quadratic:

pi j = x0i j · (vi qi − v j q j) ∀(i, j) ∈ B (3)

wi j = ‖vi qi − v j q j‖2 ∀(i, j) ∈ B (4)

– defining constraints for tmi j , involving a bilinear product:

tmi j wi j + pi j = 0 ∀(i, j) ∈ B (5)

– constraints checking the sign of tmi j , involving a bilinear product with a binary variable:

tmi j (2yi j − 1) ≥ 0 ∀(i, j) ∈ B (6)

– pairwise separation constraints, involving a quadratic term and a product with a binary
variable:

yi j

(
‖vi qi − v j q j‖2

(
‖x0i j‖2 − d2

)
−

(
x0i j · (

vi qi − v j q j
))2

)
≥ 0 ∀(i, j) ∈ B. (7)

As an objective function, we consider the sum of the deviations of the aircraft speeds, to
be minimized:

min
n∑

i=1

(qi − 1)2. (8)

A list of sets, parameters, and variables of the model is displayed in Table 1.
The problem formulation is a mixed integer nonlinear program. In the next sections, we

discuss some possible reformulations and we propose a Feasibility Pump approach tailored
to the problem.

Table 1 Sets, parameters, and variables used in the MINLP

Sets and parameters

A Set of aircraft

d Standard separation distance

xi (0) Initial position vector of aircraft i

vi Initial velocity vector of aircraft i

Variables

qi Percentage of speed variation of aircraft i

tmi j Time when the separation function between i and j attains its minimum in [0, ∞)

yi j (Binary) variables to model logical conditions

pi j Auxiliary variables for the inner product in the separation constraint

wi j Auxiliary variables for the square of the relative velocity

123

J Glob Optim

3 On mathematical model reformulations

In this section we present some exact reformulations and relaxations of MINLP problem
(3)–(8). The reason is twofold: first, we aim at obtaining a MINLP problem that is easier to
solve by standard MINLP solvers. Second, as explained in details in Sect. 4, we will need
such reformulations for designing the Feasibility Pump algorithm.

3.1 Project out variable tmi j

Firstly, note that, ∀(i, j) ∈ B, tmi j is a dependent variable. However, it appears only in
constraint (5), where it is defined, and in constraint (6) where it is linked to binary variable
yi j .

Let us replace tmi j = − pi j
wi j

in constraint (6) and simplify it by exploiting the fact that, by
definition, wi j is non-negative:

−pi j (2yi j − 1) ≥ 0 ∀(i, j) ∈ B.

To make the constraint above linear, we can observe that its meaning is:

yi j =
{
1 if pi j < 0

0 otherwise
∀(i, j) ∈ B. (9)

Now, the same can be obtained by linking variables p and y with the two linear constraints
below:

p
i j
yi j ≤ pi j ≤ pi j (1 − yi j) ∀(i, j) ∈ B (10)

where ∀(i, j) ∈ B, p
i j
and pi j are a lower and an upper bound on variable pi j , respectively.

These bounds can be easily found as the only variables appearing in the definition of pi j
(3), i.e., the q variables, are bounded for operational reasons. Thus, we replace nonlinear
constraints (5) and (6) by linear constraints (10).

3.2 Linearize the separation constraint

Constraints (7) are disjunctive constraints modeling the fact that, ∀(i, j) ∈ B, the separation
constraints have to be active if and only if yi j = 1. The same effect can be obtained by
rewriting it as:

‖vi qi − v j q j‖2
(
‖x0i j‖2 − d2

)
−

(
x0i j · (

vi qi − v j q j
))2 ≥ Mi j (1 − yi j) ∀(i, j) ∈ B

where Mi j is the so-called bigM, i.e., a “large enough” constant. More details about how to
compute it are provided in Section 4.2. Separation constraints above are still nonlinear. To
make another step forward to linearization, ∀(i, j) ∈ B we replace ‖vi qi − v j q j‖2 with wi j ,

introduce an additional variable, zi j = p2i j =
(
x0i j · (

vi qi − v j q j
))2

, and replace the last

nonlinear term with it. Now we have linear separation constraints:

(
‖x0i j‖2 − d2

)
wi j − zi j ≥ Mi j (1 − yi j) ∀(i, j) ∈ B. (11)

123

J Glob Optim

3.3 The MINLP reformulation

We report the complete reformulation in the following:

min
∑

i∈A

(qi − 1)2 (12)

ak = vikqi − v jkq j ∀(i, j) ∈ B, k ∈ {1, 2} (13)

bk = a2k ∀(i, j) ∈ B, k ∈ {1, 2} (14)

pi j =
∑

k∈{1,2}
x0i jkak ∀(i, j) ∈ B (15)

zi j = p2i j ∀(i, j) ∈ B (16)

wi j =
∑

k∈{1,2}
bk ∀(i, j) ∈ B (17)

p
i j
yi j ≤ pi j ≤ pi j (1 − yi j) ∀(i, j) ∈ B (18)

(
‖x0i j‖2 − d2

)
wi j − zi j ≥ Mi j (1 − yi j) ∀(i, j) ∈ B (19)

yi j ∈ {0, 1} ∀(i, j) ∈ B (20)

where ∀i ∈ A, k ∈ {1, 2}, vik represents the kth component of the velocity vector vi in a
2-dimensional space and x0i jk the kth component of the vector x0i j of relative initial positions
of aircraft i and j .

Note that the nonlinear terms are isolated in the second and the forth sets of constraints. A
MILP relaxation can be easily obtained by applying standard linear relaxations to these two
sets of constraints. In particular, we do it by the classical method of generating the tangents
to the curves representing the nonlinear terms at some points (see, for example, [17]).

4 Feasibility Pump Algorithms

In this section, we first introduce the general scheme of Feasibility Pump algorithms and
then present a new version, tailored to solve the aircraft deconfliction with speed regulation
problem.

4.1 The general scheme of Feasibility Pump

Feasibility Pump (FP)was introduced byFischetti et al. [15] formixed integer linear program-
ming problems, then extended to convex MINLPs [6] and to nonconvex MINLPs [13,14].
The main idea is to decompose the problem into two subproblems that are easier to solve, and
iteratively solve these two subproblems by trying to minimize, for each of them, the distance
to the best solution of the other subproblem. The subproblems are modified at each iteration
until the two solutions coincide, i.e., a feasible solution is found.

More formally, let us define a generic MINLP problem:

(P)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min f (x, y)

g(x, y) ≤ 0

x ∈ X

y ∈ Y ∩ Z
p,

123

J Glob Optim

where X , Y are two polyhedra of appropriate dimension, f : Rn+p → R is convex without
loss of generality, and functions g : Rn+p → R

m are nonlinear and, possibly, nonconvex.
Problem (P) is well-known to be, in general, practically difficult to solve. However, we can
identify two relaxations of problem (P) that are “easier” to solve, like, for example:

(P1)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min f (x, y)

g(x, y) ≤ 0

x ∈ X

y ∈ Y

(P2)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min f (x, y)

g(x, y) ≤ 0

x ∈ X

y ∈ Y ∩ Z
p

where g represents a convex (maybe linear) relaxation of g. From a theoretical viewpoint,
(P1) and (P2) are as difficult to solve as (P). In particular, (P1) is possibly a nonconvex
NLP, while (P2) is a convex MINLP. However, compared to (P), the two relaxations deal
with one source of nonconvexity at time, thus making them easier to solve in practice. Note
that (P) = (P1) ∩ (P2), thus a point (x∗, y∗) that is feasible for both (P1) and (P2) is also
feasible for (P).

In the basic version of FP, we neglect the objective function f (x, y) because the aim is
finding any feasible solution. We will discuss this in detail in the next section. The general
scheme of basic Feasibility Pump algorithm can be summarized in Algorithm 1. The ini-

Algorithm 1: FP general scheme
1: � = 0;
2: initialize (x̂0, ŷ0);
3: repeat
4: � + +;
5: Find (x̃�, ỹ�), i.e., the solution of (P1) that minimizes ‖(x, y) − (x̂�−1, ŷ�−1)‖;
6: Find (x̂�, ŷ�), i.e., the solution of (P2) that minimizes ‖(x, y) − (x̃�, x̃�)‖;
7: until (((x̂�, ŷ�) == (x̃�, ỹ�)) or time/iteration limit reached)

tialization step (step 2: in Algorithm 1) typically consists on solving locally the continuous
relaxation of (P) and, in case the integer variables take fractional values, round them. The
corresponding solution might be infeasible but it can be used as starting point (x̂0, ŷ0).

In the next section, we present a new version of FP, tailored for the aircraft deconfliction
with speed regulation problem. We refer the reader to [6,14,15] for details on FP algorithms
for general MI(N)LP problems.

4.2 Tailored FP Algorithm

We now describe in details the tailored version of FP algorithm that we designed and devel-
oped. First of all, let us define subproblems (P1) and (P2).

4.2.1 Subproblem (P1)

As explained in the previous section, subproblem (P1) represents a continuous relaxation of
(P). We obtain it by dropping only the integrality requirements, i.e., (20). At iteration � of
the FP algorithm, we have (P1)�. Its objective function is defined as follows:

min ‖y − ŷ�−1‖1 + ω
∑

i∈A

(qi − 1)2 (21)

123

J Glob Optim

with ω ≥ 0. Note that, when ω is set to 0, i.e., when we are considering a pure feasibility
problem, solving (P1)� means: (i) testing the compatibility of values ŷ�−1 with a feasible
solution of problem (P); (ii) if no feasible solution corresponds to ŷ�−1, a feasible solution
is computed by minimizing the distance ‖y − ŷ�−1‖. Setting ω to a value greater than 0
makes also optimality come into the play. As (P1)� is a nonconvex NLP, it has, in general,
multiple local optima. In this context we cannot afford the effort finding the global optimum,
thus we solve it to local optimality and might discard feasible solutions of (P). To limit the
consequences of dealing with local optima, we can divide the solving phase in two parts:

• Solve (P1)� to local optimality, but multiple times, i.e., using randomly generated starting
points;

• If no solution is found, then solve (P1 f i x)�:

min
∑

i∈A

(qi − 1)2 (22)

(12) − (18) (23)

y = ŷ�−1 (24)

Unfortunately, preliminary computational results showed that considering (P1 f i x)� does not
help in converging to a feasible solution of (P). Thus, we will report only results with part
1 above, while skiping part 2.

4.2.2 Subproblem (P2)

Several approaches to define subproblem (P2) are possible. The common point is the defini-
tion of a problem easier than (P) but that preserves its integrality requirements. In the MILP
case [15] solving (P2) is represented by a simple rounding phase. In this case, (P2) can be
interpreted as min ‖y− ỹ�‖ subject to integrality requirements and bounds on y and no other
constraint. The same approach has been generalized to the convex MINLP case in [5]. When
a rounding phase is choosen, an issue that has to be taken into account is the possibility of
FP to cycle, i.e., to get stuck on previously seen values of (x̂�, ŷ�) and/or (x̃�, ỹ�). To break
cycles, a flipping procedure is typically considered.

Bonami et al. [6] proposed an alternative approach for the convex MINLP case: they
define (P2) as a MILP relaxation of (P) by keeping the linear constraints and linearizing
the nonlinear ones throught outer-approximation (OA) cuts added at each iteration so as to
cut previously considered solutions. This approach has been generalized to the nonconvex
MINLP case by D’Ambrosio et al. [14]: linear constraints are considered, constraints known
to define convex feasible subsets are linearized throughOAcuts, and the remaining constraints
are dropped. Unfortunately this approach cannot guarantee to prevent cycles as it might
happen that no OA cut can be added to improve the MILP relaxation. In [14] the authors
propose to use a taboo list to discard previously seen solutions of (P2) by flipping.

Here we propose the following approach: we define (P2) as (13), (15), (17)–(20) plus the
standard secant linearization of constraints (14) and (16). To deal with potential cycles, we
adopt the taboo list approach mentioned before.

As for the objective function, we define it as

min ‖(a, b, q) − (ã�, b̃�, q̃�)‖22.
Note that we linearize the objective function above so as to obtain a MILP relaxation of
(P). MILP problems are theoretically difficult, but standard solvers are effective to find the
optimal solution. Thus, in Sect. 5, we solve (P2) to optimality.

123

J Glob Optim

Finally, we comment on howwe derive lower and upper bounds on b and z variables and a
proper value ofM . First, note that, as q variables are bounded and a (resp. p) variables depend
on them, we can easily derive valid bounds for b variables (resp. z). Note that, for aircraft
pairs (i, j) ∈ B such that aircraft have parallel trajectories, i.e., ∃k ∈ {1, 2} : vik = v jk ,
we do not impose the separation constraints because we check in a preprocessing step that
aircraft flying on parallel trajectories are already separated. We then replace set B with set
B = {(i, j) ∈ B|vi1 �= v j1 and vi2 �= v j2}.

As w variables depend on b variables, they can be easily bounded too. Consequently, we
can derive valid values of parameter M .

4.2.3 Objective function improvement procedure

In a pure feasibility setting, after a feasible solution is found, the algorithm stops. However,
we are interested in continuing to improve such a solution. This is done by adding to (P1)
what we call “optimality cut”, i.e.,

∑

i∈A

(qi − 1)2 ≤ f ∗ − ε (25)

where f ∗ is the value of the objective in the best feasible solution of (P) found so far.We stop
the algorithm when subproblem (P1) becomes infeasible or a time/iteration limit is reached.
Note that, in the case of (P1) infeasible, there is no guarantee that no better solution for
(P1) exists, as we solve it to local optimality. However, in practice, the solution found are
satisfactory as shown in Sect. 5.

4.2.4 Main scheme

We report the main scheme of the tailored FP algorithm for aircraft deconfliction with speed
regulation problem in Algorithm 2.

5 Computational Results

In this section, we present and discuss the results of numerical experiments carried out to test
the proposed FP approach. Models were implemented using the Ampl modeling language
for optimization problems [16]. We used CPLEX v. 12.6.3 to solve the linear relaxation of
the initial problem and Ipopt v. 3.10.2 [22], that implements an Interior-Point method, for the
NLP relaxation. These solvers were run with their default settings. The tests were performed
on a 2.66 GHz Intel Xeon (octo core) processor with 32GB of RAM and Linux Operating
System.

We tested our algorithms on the same sets of problem instances used in [10]. A first set
of instances is generated in such a way to have n aircraft in 2-dimensional space, placed
on a circle and all headed towards its center (or slightly deviated by ±5◦ with respect to
such direction). These instances are denoted with nX where X is replaced by the number
of aircraft. Trajectories are straight-lines. These problems are highly symmetric problems,
and difficult to solve. The number of conflicts in the same conflict zone, around the center
of the circle, amounts to n(n − 1)/2. A second set of instances is considered, in such a
way that aircraft are no more flying towards the center of a circle, but moving along straight
intersecting trajectories. This simulatesmore realistic aircraft configurations. These instances

123

J Glob Optim

Algorithm 2: FP Algorithm for the aircraft deconfliction with speed regulation
Require: ω, niter_max, nsp_max
compute initial solution (x̂0, ŷ0);
TL = {(x̂0, ŷ0)}, � = 0, f ∗ = +∞;
while (� < niter_max) do

� + +;
for s = 0; s <nsp_max; s + + do
if (s > 0) then
Select randomly the starting point for the NLP solver (within the variables bound ranges);

end if
Solve (P1)

� and get the new solution (x̃�, ỹ�);
if (‖ỹ� − ŷ�−1‖2 = 0) then
TL = TL ∪{(x̃�, ỹ�)}
if (f ∗ > f (x̃�, ỹ�)) then

(x∗, y∗) = (x̃�, ỹ�)

end if
end if
if (a feasible solution for (P1)

� was found) then
break;

end if
end for
if (a feasible solution for (P1)

� was not found) then
break;

end if
Solve (P2)

� and get the new solution (x̂�, ŷ�);
if (‖(x̃�, ỹ�) − (x̂�, ŷ�)‖ = 0) then
TL = TL ∪{(x̂�, ŷ�)}
if (f ∗ > f (x̂�, ŷ�)) then

(x∗, y∗) = (x̂�, ŷ�)

end if
end if

end while
if (f ∗ < +∞) then
return (x∗, y∗);

end if

are denoted with nX_cY where X is the number of aircrafts and Y the number of conflicts. In
both sets of instances, aircraft move initially all at the same speed, namely 400 NM/h (where
1 NM (Nautical Mile) = 1852 m). These speeds are modified after executing the proposed
algorithms, in such a way that aircraft are separated, and their new values, according to the
subliminal speed control bounds, range from 376 to 412 NM/h. Variables q are indeed in the
interval [0.94, 1.03]. The value of the standard aircraft separation d is set to 5 NM.

Our experiments were performed with the following FP setting:

– at each iteration, we generate nsp_max = 20n(n−1)/2 starting points to solve subprob-
lem (P1)

– iteration limit (niter_max): 10n
– ω ∈ {0, 0.5, 1}.
Each of the values we tried for ω defines a different version of the FP algorithm. We name

them FP1, FP2, and FP3, respectively.
We compare the performance of the 3 versions of FP with respect to the one of Couenne

solver v. 0.4, see [4], run on the model proposed by Cafieri and Durand [10] (C&D) with
default options, but a time limit of 7200 seconds.

123

J Glob Optim

Table 2 reports, for each instance, the objective function value of: (i) the first solution
found by each method (columns 2–5); (ii) the best solution found by each method (columns
6–9); (iii) the lower bound computed by Couenne when solving the mathematical model by
Cafieri and Durand [10]. The best value(s) are reported in bold. Couenne can find the global
optimum only for small instances, namely those with n ≤ 5 and, for these instances, also
FP2 and FP3 can find it. For instance n5 and all the instances of the second set, Couenne
reaches the time limit providing a feasible solution (column 9) and a lower bound (last
column). However, FP2 and FP3 can always find a better solution in these cases. Finally, for
the remaining instances, i.e., those of the first set with n ≥ 6,Couenne cannot find a feasible
solution within the time limit, while the 3 versions of FP always do. The feasible solutions
with the best value are always found by FP3, the only exception being instance n7.

In Table 3 we report, for each instance and for each of the 3 versions of FP and Couenne:
(i) time to find the first solution; (ii) time to find the best solution; (iii) time to stop. We note
that the 3 versions of FP show CPU times of comparable order of magnitude. As expected, as
the dimension and the complexity of the instances grow, the CPU time grows significantly.
However, excluding the smallest instances, FPs still show reasonable performances for small
to medium size instances compared to C&D, that, on the contrary, reaches the time limit for
almost all the instances. Moreover, we remark that the CPU times needed by FPs to find the
first feasible solution are between roughly 0 and 1.2 CPU seconds. This makes the approach
viable from the application perspective.

Table 4 reports the number of iterations of FP needed to find the best solution. The
number of iterations of the best FP version, namely FP3, is always very low (it never exceeds
5 iterations). In the table, we do not report the number of iterations needed to find the first
feasible solution because it is always ≤ 2 (the only exception being n7_c6 for FP1). Note
also that the total number of iterations is always the one needed to find the best solution plus
1, where the extra iteration is needed to check that the new optimality cut makes subproblem
P1 infeasible, the only exception being instances n7_c6 and n10_c10 for FP1 for which the
iteration limit (70 and 100, respectively) is reached.

Finally, we comment on the comparison of the best version of FP, namely FP3, and
the heuristic algorithm presented in [10]. The heuristic is based on a decomposition into
subproblems (clusters) and on local exact solutions of these subproblems. Note that the
algorithm includes a modification of the current solution based on a random decision. We
run 10 times the algorithm on the same machine used to test FP to fairly compare the two
heuristics. The objective function corresponding to the best solution found by FP3 is always
better than the best solution value found among the 10 runs of the heuristic presented in [10].
As for the CPU time, the heuristic reaches the time limit for 5 instances (nX with X ≥ 7 and
n10_c10), thus FP3 is more robust as it can always find a solution. However, for the other
instances, the CPU time needed for FP3 to converge is always worse than the best of the 10
runs of the heuristic and almost always worse than the average over the 10 runs. In particular,
for instances nX, FP3 shows a CPU time of roughly the same order of magnitude of the
heuristic. For instances nX_cY the CPU time of FP3 is roughly two orders of magnitude
larger than the CPU time of the heuristic. However, we remark that the solution provided by
the heuristic is the first feasible solution found. Comparing it to the first solution provided by
FP3, we note that the CPU time of FP3 is always smaller than the one of the best run of the
heuristic. FP3 remains better on the value of the objective function, the only exception being
instance n6. We conclude that FP3 is a good compromise between efficiency and reliability.

123

J Glob Optim

Ta
bl
e
2

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e
of

th
e
fir
st
an
d
th
e
be
st
so
lu
tio

n
fo
un

d
by

ea
ch

m
et
ho

d.

in
st
an
ce

Fi
rs
ts
ol
ut
io
n

B
es
ts
ol
ut
io
n

L
B

FP
1

FP
2

FP
3

C
&
D

FP
1

FP
2

FP
3

C
&
D

C
&
D

n2
0.
00

31
43

0.
00

25
31

0.
00

25
31

0.
00

25
31

0.
00

25
83

0.
00

25
31

0.
00

25
31

0.
00

25
31

0.
00

25
31

n3
0.
00

44
10

0.
00

32
18

0.
00

16
67

0.
00

32
18

0.
00

17
44

0.
00

16
67

0.
00

16
67

0.
00

16
67

0.
00

16
67

n4
0.
00

49
15

0.
00

40
29

0.
00

40
29

0.
00

40
29

0.
00

40
44

0.
00

40
29

0.
00

40
29

0.
00

40
29

0.
00

40
29

n5
0.
00

50
72

0.
00

30
56

0.
00

30
56

0.
00

35
04

0.
00

30
89

0.
00

30
56

0.
00

30
56

0.
00

35
04

0.
00

30
46

n6
0.
00

68
48

0.
00

66
82

0.
00

66
82

–
0.
00

61
85

0.
00

60
88

0.
00

60
88

–
0.
00

26
14

n7
0.
00

92
24

0.
00

80
10

0.
00

82
70

–
0.
00

92
24

0.
00

80
10

0.
00

82
70

–
0.
00

13
02

n8
0.
00

88
53

0.
00

83
28

0.
00

83
21

–
0.
00

85
17

0.
00

83
28

0.
00

83
21

–
0.
00

02
65

n9
0.
01

22
23

0.
01

03
53

0.
00

94
87

–
0.
01

22
23

0.
01

03
53

0.
00

94
87

–
0.
00

02
23

n1
0

0.
01

18
01

0.
01

33
83

0.
01

10
16

–
0.
01

18
01

0.
01

33
83

0.
01

10
16

–
0.
00

00
91

n6
_c
5

0.
00

70
75

0.
00

43
83

0.
00

12
95

0.
00

25
49

0.
00

13
23

0.
00

12
95

0.
00

12
95

0.
00

13
27

0.
00

00
93

n7
_c
4

0.
00

67
77

0.
00

16
17

0.
00

16
17

0.
00

72
54

0.
00

16
27

0.
00

16
17

0.
00

16
17

0.
00

16
95

0.
00

00
15

n7
_c
6

–
0.
00

18
98

0.
00

16
79

0.
00

22
29

–
0.
00

15
79

0.
00

15
79

0.
00

21
53

0.
00

00
07

n8
_c
4

0.
00

51
60

0.
00

23
84

0.
00

23
84

0.
00

25
15

0.
00

24
10

0.
00

23
84

0.
00

23
84

0.
00

23
87

0.
00

05
28

n1
0_

c1
0

0.
00

65
88

0.
00

14
70

0.
00

14
70

0.
00

15
43

0.
00

50
24

0.
00

14
70

0.
00

14
70

0.
00

15
43

0.
00

00
00

123

J Glob Optim

Ta
bl
e
3

C
PU

tim
e
to

fin
d
th
e
fir
st
an
d
th
e
be
st
so
lu
tio

n
an
d
to

te
rm

in
at
e.

in
st
an
ce

Fi
rs
ts
ol
ut
io
n

B
es
ts
ol
ut
io
n

To
ta
l

FP
1

FP
2

FP
3

C
&
D

FP
1

FP
2

FP
3

C
&
D

FP
1

FP
2

FP
3

C
&
D

n2
0.
00

0.
00

0.
00

0.
00

0.
02

0.
01

0.
01

0.
00

0.
66

0.
49

0.
50

0.
08

n3
0.
00

0.
00

0.
00

0.
00

0.
04

0.
01

0.
01

0.
01

5.
69

3.
96

5.
33

0.
99

n4
0.
00

0.
00

0.
00

0.
00

0.
03

0.
01

0.
01

0.
00

5.
39

5.
29

4.
91

8.
28

n5
0.
01

0.
01

0.
01

0.
00

0.
05

0.
01

0.
01

0.
00

11
.1
9

10
.4
7

10
.1
0

t.l
.

n6
0.
01

0.
01

0.
01

–
0.
04

0.
09

0.
10

–
25

.5
9

32
.7
7

34
.4
0

t.l
.

n7
0.
37

0.
38

0.
38

–
0.
37

0.
38

0.
38

–
99

.0
1

10
2.
34

98
.8
4

t.l
.

n8
0.
05

0.
03

0.
01

–
0.
20

0.
03

0.
01

–
14

9.
52

12
2.
55

11
8.
82

t.l
.

n9
0.
84

0.
86

0.
84

–
0.
84

0.
86

0.
84

–
36

8.
49

37
7.
11

38
3.
80

t.l
.

n1
0

1.
17

1.
20

1.
18

–
1.
17

1.
20

1.
18

–
64

2.
60

66
3.
26

63
9.
99

t.l
.

n6
_c
5

0.
01

0.
01

0.
01

8.
57

0.
16

0.
02

0.
01

75
.7
5

14
8.
50

16
6.
13

17
7.
85

t.l
.

n7
_c
4

0.
01

0.
01

0.
01

0.
00

0.
16

0.
01

0.
01

12
.2
0

31
3.
10

20
0.
13

20
4.
82

t.l
.

n7
_c
6

–
0.
01

0.
01

50
7.
03

–
0.
03

0.
02

34
21

.4
9

3.
69

22
4.
43

19
1.
28

t.l
.

n8
_c
4

0.
01

0.
01

0.
01

0.
00

0.
08

0.
01

0.
01

52
.7
3

21
0.
82

20
2.
30

20
3.
75

t.l
.

n1
0_

c1
0

0.
01

0.
01

0.
01

0.
04

0.
13

0.
02

0.
02

0.
04

7.
72

95
0.
04

97
5.
36

t.l
.

123

J Glob Optim

Table 4 Number of iterations
needed by each FP version to find
the best solution.

Instance FP1 FP2 FP3

n2 5 2 2

n3 11 3 2

n4 7 2 2

n5 11 2 2

n6 6 4 4

n7 2 2 2

n8 5 2 2

n9 2 2 2

n10 2 2 2

n6_c5 32 3 2

n7_c4 27 2 2

n7_c6 − 4 3

n8_c4 14 2 2

n10_c10 17 2 2

6 Conclusions

Wehave considered a very difficult problem arising in the aircraft trafficmanagement context,
namely the problem of aircraft deconfliction with speed regulation. We propose a tailored
Feasibility Pump algorithm based on reformulations and relaxation of the original problem,
that can be modeled as a mixed integer nonlinear programming problem. Its aim is to alter-
natively solve two easier subproblems represented by relaxations of the original problem by
minimizing the distance of the solution with respect to the last solution found by solving
the other subproblem. The two subproblems are designed so that a solution that is feasible
for both of them is also feasible for the original problem. Once a first feasible solution is
found, Feasibility Pump tries to improve it thanks to an optimality cut, added to the first
subproblem. We compare computationally three different versions of Feasibility Pump with
a global optimization solver, namely Couenne, on the mathematical formulation proposed
by Cafieri and Durand [10] on two sets of instances. The results show that Feasibility Pump
algorithms clearly outperform Couenne on almost all the instances, with the exception of
the smallest instances. Moreover, Feasibility Pump can always find a feasible solution within
1.20 CPU second, making the approach very interesting to practically solve the real-world
application.

In the future we would like to explore alternative exact methods with the aim of first
finding quickly a feasible solution, then to provide a good lower bound in order to measure
the quality of the solutions.

Acknowledgements The authors gratefully acknowledge the financial support by French National Research
Agency (ANR) through Grant ANR 12-JS02-009-01 “ATOMIC”.

References

1. Alonso-Ayuso, A., Escudero, L.F., Martín-Campo, F.J.: Collision avoidance in air traffic management: a
mixed-integer linear optimization approach. IEEE Trans. Intell. Transp. Syst. 12(1), 47–57 (2011)

123

J Glob Optim

2. Alonso-Ayuso, A., Escudero, L.F., Martín-Campo, F.J.: A mixed 0–1 nonlinear optimization model and
algorithmic approach for the collision avoidance in ATM: velocity changes through a time horizon.
Comput. Opera. Res. 39(12), 3136–3146 (2012)

3. Alonso-Ayuso, A., Escudero, L.F., Martín-Campo, F.J.: Exact and approximate solving of the aircraft
collision resolution problem via turn changes. Transp. Sci. 50(1), 263–274 (2015)

4. Belotti, P., Lee, J., Liberti, L., Margot, F., Wachter, A.: Branching and bounds tightening techniques for
non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)

5. Bonami, P., Gonalves, J.P.M.: Heuristics for convex mixed integer nonlinear programs. Comput. Optim.
Appl. 51(2), 729–747 (2012)

6. Bonami, P., Cornuéjols, G., Lodi, A.,Margot, F.: A feasibility pump formixed integer nonlinear programs.
Math. Program. 119(2), 331–352 (2009)

7. Brochard, M.: Erasmus—en route air traffic soft management ultimate system. Technical report, Euro-
control Experimental Centre

8. Cafieri, S.: Maximizing the number of solved aircraft conflicts through velocity regulation. In: MAGO
2014, 12th Global Optimization Workshop, pp. 1–4. Málaga, Spain (2014)

9. Cafieri, S.: MINLP in Air Traffic Management: Aircraft conflict avoidance. In: Terlaky, T., Anjos, M.,
Ahmed, S. (eds.) Advances and Trends in Optimization with Engineering Applications, pp. 293–301.
MOS-SIAM Series on Optimization, SIAM, Philadelphia (2017)

10. Cafieri, S., Durand, N.: Aircraft deconfliction with speed regulation: new models from mixed-integer
optimization. J. Global Optim. 58(4), 613–629 (2014)

11. Cafieri, S., Omheni, R.: Mixed-integer nonlinear programming for aircraft conflict avoidance by sequen-
tially applying velocity and heading angle changes. Eur. J. Oper. Res. 260(1), 283–290 (2017)

12. Cafieri, S., Rey, D.: Maximizing the number of conflict-free aircraft using mixed-integer nonlinear pro-
gramming. Comput. Oper. Res. 80, 147–158 (2017)

13. D’Ambrosio, C., Frangioni, A., Liberti, L., Lodi, A.: Experiments with a Feasibility Pump Approach for
Nonconvex MINLPs, pp. 350–360. Springer, Berlin (2010)

14. D’Ambrosio, C., Frangioni, A., Liberti, L., Lodi, A.: A storm of feasibility pumps for nonconvexMINLP.
Math. Program. 136(2), 375–402 (2012)

15. Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program. 104(1), 91–104 (2005)
16. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: AModeling Language for Mathematical Programming,

2nd edn. Brooks/Cole, Boston (2002)
17. Liberti, L., Cafieri, S., Tarissan, F.: Reformulations in mathematical programming: a computational

approach. Foundations of Computational Intelligence, vol. 3, pp. 153–234. Springer, Berlin (2009)
18. Pallottino, L., Feron, E.M., Bicchi, A.: Conflict resolution problems for air traffic management systems

solved with mixed integer programming. IEEE Trans. Intell. Transp. Syst. 3(1), 3–11 (2002)
19. Rey, D., Rapine, C., Fondacci, R., Faouzi, N.E.E.: Minimization of potential air conflicts through speed

regulation. Transp. Res. Rec. J. Transp. Res. Board 2300, 59–67 (2012)
20. Rey, D., Rapine, C., Fondacci, R., Faouzi, N.E.E.: Subliminal speed control in air traffic management:

optimization and simulation. Transp. Sci 50(1), 240–262 (2016)
21. Richards A, How J (2002) Aircraft trajectory planning with collision avoidance using mixed integer linear

programming. In: 2002 Proceedings of the American Control Conference, vol. 3, pp. 1936–1941
22. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for

large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

123

	Feasibility pump for aircraft deconfliction with speed regulation
	Abstract
	1 Introduction
	2 The aircraft deconfliction problem with speed regulation
	3 On mathematical model reformulations
	3.1 Project out variable tmij
	3.2 Linearize the separation constraint
	3.3 The MINLP reformulation

	4 Feasibility Pump Algorithms
	4.1 The general scheme of Feasibility Pump
	4.2 Tailored FP Algorithm
	4.2.1 Subproblem (P1)
	4.2.2 Subproblem (P2)
	4.2.3 Objective function improvement procedure
	4.2.4 Main scheme

	5 Computational Results
	6 Conclusions
	Acknowledgements
	References

