Assessment of the Shadowing Effect Between Windturbines at VOR and Radar frequencies.
Ludovic Claudepierre, Rémi Douvenot, Alexandre Chabory, Christophe Morlaas

To cite this version:
Ludovic Claudepierre, Rémi Douvenot, Alexandre Chabory, Christophe Morlaas. Assessment of the Shadowing Effect Between Windturbines at VOR and Radar frequencies.. Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), 2016, 13, pp.1464 - 1476. hal-01609719

HAL Id: hal-01609719
https://hal-enac.archives-ouvertes.fr/hal-01609719
Submitted on 19 Aug 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Assessment of the Shadowing Effect Between Windturbines at VOR and Radar frequencies.

L. Claudepierre, R. Douvenot, A. Chabory, and C. Morlaas.
ENAC, TELECOM-EMA, F-31055 and Toulouse University, F-31400, Toulouse, Franc.
morlaas@recherche.enac.fr

Abstract: Due to the fast-growing of green energy, projects of wind-farms are planned closer and closer to the minimum regulation distances of radio navigation devices (radar, VOR ...). To assess the impact of this windfarms close to radio-navigation devices, modelling tools are in developments [1-4]. Generally, robust modelling methods (MoM) are used to compute the field scattered by the windturbines [1, 2]. However, assumptions must be done to save memory and computation time and different modelling methods are based on physical optics [3, 4] or UTD [2]. Besides, in literature, interactions between windturbines are always neglected. This paper investigates the relevance of the latter.

Indeed, to lower their impact, a simple idea would be to place windturbines behind the one closest to the transmitting antenna to take advantage of the shadowing effect. Therefore, the shadowed windturbine scattering would be reduced. Nevertheless, this effect mainly depends on the distance and the frequency. In this paper, the necessity to account for the shadowing effect between windturbines is established at VOR and radar frequencies to notify wind-energy developer about the shadowing effect of windturbines.

The interactions between the windturbines is shown to be negligible at VOR frequency while at radar frequencies, it is not the case and need to be taking account in simulation tools.

Keywords: VOR, RADAR, windturbines, shadowing, scattering.

References:

This use of this work is restricted solely for academic purposes. The author of this work owns the copyright and no reproduction in any form is permitted without written permission by the author.
Assessment of the Shadowing Effect Between Windturbines at VOR and Radar frequencies

Geometric configuration:

Windturbine: ENERCON-E66.
- Mast: metallic cone:
 - height = 64.17 m,
 - Rotor blades diameter = 70 m
 - top diameter = 2.18 m,
 - bottom diameter = 4.17 m.

Distances:
- Separation distance between windturbines: 2 rotor-blades diameters (140 m) Lowest common separation distances (the most significant shadowing effect).
- VOR station to windturbine mast: 2000m, mast to scattered field: up to 1000m.

Electromagnetic consideration:
- Parabolic equation method (PE) is used to compute the incident field on the windturbine mast [5].
- Physical optics (PO) is used to compute the electromagnetic scattering from the windturbine [4].
- The VOR antenna is at 3m above the ground with a counterweight of 3m diameter.
- The radars are a TRAC2000 at 1.3GHz and a STAR2000 at 2.7GHz.
 - The antennas are at 20m above the ground.
- The polarization is horizontal.
Assessment of the Shadowing Effect Between Windturbines at VOR and Radar frequencies

Simulations and results:

- For the VOR frequency at 114MHz, the scattered field rapidly decreases behind the windturbine mast. It rapidly becomes negligible compared to the incident field.

L. Claudepierre, R. Douvenot, A. Chabory, and C. Morlaas.
ENAC, TELECOM-EMA, F-31055 and Toulouse University, F-31400, Toulouse, France.
Simulations and results: TRAC2000 Radar at 1.3GHz

- For the radar frequency at 1.3GHz at two rotors distance between windturbines, the shadowing effect should be considered between successive windturbines.

L. Claudepierre, R. Douvenot, A. Chabory, and C. Morlaas.
ENAC, TELECOM-EMA, F-31055 and Toulouse University, F-31400, Toulouse, France.
Assessment of the Shadowing Effect Between Windturbines at VOR and Radar frequencies

Simulations and results:

Electrical fields (dBV/m) in a vertical plane at 140 m behind the mast.

- For the radar frequency at 2.7GHz, at two rotors distance between windturbines the shadowing effect must be considered between successive windturbines.

L. Claudepierre, R. Douvenot, A. Chabory, and C. Morlaas.
ENAC, TELECOM-EMA, F-31055 and Toulouse University, F-31400, Toulouse, France.

STAR2000 Radar at 2.7GHz

Ratio (dB) of the incident field without (direct) and with (total) the windturbine mast.
Conclusion:

It has been investigated the assessment of the shadowing effect behind a windturbine mast for the windturbine alignment at VOR (114 MHz) and radar frequencies (1.3 GHz and 2.7 Ghz).

For further work it will be relevant to add the rotor-blades effect.

For the VOR system, no significant shadowing effect is observed.
- Windturbines alignment is not efficient to reduce their impact.
- Windturbine interactions can be neglected in electromagnetic simulation tools.

For radar frequencies, the incident field ratio with and without windturbine shadowing is around 4 dB and 6 dB for 1.3 GHz and 2.7 Ghz, respectively.
- It could be relevant to align windturbines to reduce their impact.
- Windturbine interactions must be accounted in electromagnetic simulation tools.

<table>
<thead>
<tr>
<th>Incident field ratio w/ and w/o windturbine</th>
<th>VOR 114MHz</th>
<th>Radar 1.3GHz</th>
<th>Radar 2.7GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Difference</td>
<td>< 2dB</td>
<td>< 5dB</td>
<td>< 7dB</td>
</tr>
<tr>
<td>Typical Difference</td>
<td>1 dB</td>
<td>> 2 dB</td>
<td>> 4dB</td>
</tr>
<tr>
<td>Neglect windturbine interactions?</td>
<td>Yes</td>
<td>May be</td>
<td>No</td>
</tr>
</tbody>
</table>

L. Claudepierre, R. Douvenot, A. Chabory, and C. Morlaas.
ENAC, TELECOM-EMA, F-31055 and Toulouse University, F-31400, Toulouse, France.