R. H. Hardin and F. D. Tappert, Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coecient wave equations, Siam Rev, vol.15, issue.2, p.423, 1973.

G. D. Dockery and J. R. Kuttler, An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation, IEEE Transactions on Antennas and Propagation, vol.44, issue.12, pp.1592-1599
DOI : 10.1109/8.546245

M. Levy, Parabolic Equation Methods for Electromagnetic Wave Propagation, ser. IEE electromagnetic waves series 45, IET, 2000.
DOI : 10.1049/pbew045e

W. L. Siegmann, G. A. Kriegsmann, and D. Lee, A wide???angle three???dimensional parabolic wave equation, The Journal of the Acoustical Society of America, vol.78, issue.2, pp.659-664, 1985.
DOI : 10.1121/1.392434

H. Zhou, A. Chabory, and R. Douvenot, A 3D split-step Fourier algorithm based on a discrete spectral representation of the propagation equation, IEEE Trans. Antennas Propag, vol.65, issue.4, 1988.
URL : https://hal.archives-ouvertes.fr/hal-01471666

W. C. Chew, Electromagnetic theory on a lattice, Journal of Applied Physics, vol.10, issue.10, pp.4843-4850, 1994.
DOI : 10.1016/0165-2125(88)90012-1

URL : http://www.ccem.uiuc.edu/chew/e_papers/emtl.ps.gz

H. Zhou, A. Chabory, and R. Douvenot, Comparisons of discrete and continuous propagators for the modeling of low tropospheric propagation, 11th European Conference on Antennas and Propagation (EUCAP), p.2017

G. A. Deschamps, Gaussian beam as a bundle of complex rays, Electronics Letters, vol.7, issue.23, pp.684-685, 1971.
DOI : 10.1049/el:19710467