Hamilton-Jacobi-Bellman equations for fuzzy-dual optimization

Abstract : In this article, after introducing fuzzy-dual numbers, functions and functionals, the optimization of a fuzy-dual functional is considered through an extension of Euler's condition. Then, once uncertainty is imbedded in a fuzzy-dual dynamical system, the optimization of such systems is considered, leading to an extended Hamilton-Jacobi-Bellman equation to characterize optimal fuzzy-dual solutions.
Type de document :
Communication dans un congrès
CCC 2017 36th Chinese Control Conference , Jul 2017, Dalian, China. IEEE, pp.ISBN: 978-1-5386-2918-5 2017, 2017 36th Chinese Control Conference (CCC) 〈10.23919/ChiCC.2017.8027369〉
Liste complète des métadonnées

https://hal-enac.archives-ouvertes.fr/hal-01629007
Contributeur : Laurence Porte <>
Soumis le : dimanche 5 novembre 2017 - 19:18:45
Dernière modification le : jeudi 16 novembre 2017 - 09:57:47

Identifiants

Collections

Citation

Lunlong Zhong, Felix Antonio Claudio Mora-Camino, Hakim Bouadi, Roger Marcelin Faye. Hamilton-Jacobi-Bellman equations for fuzzy-dual optimization. CCC 2017 36th Chinese Control Conference , Jul 2017, Dalian, China. IEEE, pp.ISBN: 978-1-5386-2918-5 2017, 2017 36th Chinese Control Conference (CCC) 〈10.23919/ChiCC.2017.8027369〉. 〈hal-01629007〉

Partager

Métriques

Consultations de la notice

56