C. Snow, Five reasons the auvsi got its drone market forecast wrong. [Online] Available: http://www.suasnews.com/2014/06/five- reasons-the-auvsi-got-its-drone-market-forecast-wrong, 2014.

L. Socit-savante-de-l, Aeronautique et de l'Espace (A3F) and Academie de l'Air et de l'Espace (AAE), Present and Futur of Civilian Drones, 2015.

. Tcas-program-office, Concept of operation for the airborne collision avoidance system x, FAA, CONOPS, 2013.

R. Sc-147, Minimum operational performance standards for traffic alert and collision avoidance systems airborne equipment, 2014.

C. A. Munoz, A. Narkawicz, J. Chamberlain, M. Consiglio, and J. Upchurch, A Family of Well-Clear Boundary Models for the Integration of UAS in the NAS, 14th AIAA Aviation Technology, Integration, and Operations Conference, 2014.
DOI : 10.2514/6.2013-4622

M. Johnson, E. R. Mueller, and C. Santiago, Characteristics of a well clear definition and alerting criteria for encounters between uas and manned aircraft in class e airspace, Eleventh USA/Europe Air Traffic Management Research and Development Seminar (ATM2015), 2015.

M. Contarino, All weather sense and avoid for uass Available: http://rcubedengineering.com/wp- content/uploadsAWSAS-Report-to-Office-of-Naval-Research- for-R3-Engineering.pdf [13] Literature review on detect, sense, and avoid technology for unmanned aircraft systems Available: https, 2009.
DOI : 10.1117/12.884423

X. Yu, Y. C. Zhang-]-r, L. Rorie, and . Fern, Sense and avoid technologies with applications to unmanned aircraft systems: Review and prospects, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp.152-166, 2015.
DOI : 10.1016/j.paerosci.2015.01.001

R. H. Chen, A. Gevorkian, A. Fung, W. Chen, and V. Raska, Multisensor data integration for autonomous sense and avoid, AIAA Infotech at Aerospace Technical Conference, 2011.
DOI : 10.2514/6.2011-1479

. Tcas-program-office, Concept of use for the airborne collision avoidance system (acas) xu, FAA, CONUSE, 2015.

D. M. Asmar and M. J. Kochenderfer, Optimized airborne collision avoidance in mixed equipage environments, Lincoln Laboratory, MIT Report, 2013.

M. J. Kochenderfer and J. P. Chryssanthacopoulos, Robust airborne collision avoidance through dynamic programming, 2011.

J. E. Holland, M. J. Kochenderfer, and W. A. Olson, Optimizing the next generation collision avoidance system for safe, suitable, and acceptable operational performance Available: http://www.atmseminar.org/seminarContent/seminar10, .pdf [23] K. P. Valavanis and G. J. Vachtsevanos, Handbook of Unmanned Aerial Vehicles, 2013.
DOI : 10.2514/atcq.21.3.275

E. H. Londner, Collision Avoidance System Effectiveness on Low Performance Unmanned Aircraft, AIAA Infotech @ Aerospace, 2016.
DOI : 10.2514/1.44867

D. M. Asmar, Airborne collision avoidance in mixed equipage environments, 2013.

P. Angelov, . Sense, U. Avoid-in, A. Research, C. Wiley et al., Investigating detect-and-avoid surveillance performance for unmanned aircraft systems, Proceedings of 14th AIAA Aviation Technology, Integration, and Operations Conference, 2012.

E. Euteneur, G. Loegering, S. Krishnan, and J. Jewell, Required surveillance sensors for DAA, 2014 IEEE/AIAA 33rd Digital Avionics Systems Conference (DASC), pp.6-6, 2014.
DOI : 10.1109/DASC.2014.6979508

E. Thomas and O. Bleeker, Options for insertion of rpas into the air traffic system, 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), pp.5-9, 2015.