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Abstract—In this paper, we assess the performance of a
workload model trained on a subset of sectors, focusing on
how it generalizes on fresh sectors. The model of the air traf�c
controller workload is learned from historical data made of
workload mesurements extracted from past sector operations and
ATC complexity measurements computed from radar records
and airspace data (sector geometry).

The workload is assumed to be low when a given sector is
collapsed with other sectors into a larger sector, normal when it
is operated as is, and high when it is split into smaller sectors
assigned to several working positions. This learning problem is
modeled as a classi�cation problem where the target variable
is a workload category (low, normal, high) and the explanatory
variables are the air traf�c control (ATC) complexity metrics.

In previous work, we compared several classi�ers on this
problem. The models were trained on one week of traf�c, and
their generalization performance was assessed on another week
of traf�c, using the same sectors in both the training and test
sets.

In the current work, we examine if models learned on a speci�c
set of sectors can be performant on any other sector, or not. We
also give a closer look at how the workload varies with the ATC
complexity measures in our data, using bagplots of the data
points for a few sector instances. The results allow us to better
understand the strengths and limits of our data-driven model.

Keywords—Air traf�c control, ATC complexity, workload,
machine learning, airspace con�guration

I. I NTRODUCTION

Predicting the workload of air traf�c controllers is of crucial
importance to the safety of the air traf�c management (ATM)
system at large. Overloads might lead to potentially dangerous
situations where some con�icts might not be detected in time
by the controllers.

Predicting the workload with good accuracy is also a
question of ef�ciency. In day-to-day operations, the airspace
is dynamically recon�gured according to the controller work-
load. Underloaded sectors are collapsed to form larger sectors,
and overloaded sectors are split into several smaller sectors
operated separately. When it is not possible to absorb the
traf�c simply by recon�guring sectors, the traf�c is delayed
or rerouted so as to avoid the congested areas. This needs to
be done well in advance, usually before the aircraft take off.
Predicting with greater accuracy which ATC sectors shall be
operated at what time and which of these sectors might get
overloaded would improve the whole traf�c regulation process.
This requires a realistic and accurate workload model, which
is the subject of this paper.

This problem has been addressed in several ways since
the beginings of air traf�c control (ATC). Depending on the
context and purpose, one might count the movements on an
airport, or the number of aircraft within the boundaries of
an en-route sector, or the incoming �ow of traf�c over a
time period. Such basic metrics – and the associated threshold
values (capacities) – provide simple and straightforward an-
swers to the question of deciding whether the controllers are
experiencing a normal workload when handling given traf�c,
or if they are overloaded.

However, it has been aknowledged for a long time that
simple metrics, such asaircraft count, do not adequately re�ect
the complexity of air traf�c control. ATC complexity covers
dynamic aspects relative to the traf�c, static aspects relative
to the sector geometry and route network, and aspects relative
to the air traf�c control procedures.

In this paper, we are interested in examining more closely
the relationship between ATC complexity metrics and work-
load, using a gradient boosted tree model selected in our
previous work [1]. This model is trained on historical data
of aircraft trajectories and past sector operations. This data
is made of complexity measures computed from radar tracks
and sector data, and workload measures extracted from the
status of the control sectors (collapsed, opened, or split into
smaller sectors). We have shown in previous works that such
a model provides correct predictions in more than80% of the
cases, when training the model on one week of traf�c in all
the french sectors, and when assessing the results on another
week of traf�c in approximately the same sectors.

Our aim here is to check if such a model can be trained on
a subset of sectors, and still generalize well on fresh sectors.
In addition, we want to verify if some intuitive notions on
the relationship between complexity and workload – such as
“if this complexity value increases, then the workload should
be higher” – are actually true for our data. In other words,
we would like to know if our model actually captures the
relationship between the cognitive workload of the controller
and the complexity metrics, or if our data-driven approach also
captures some of the characteristics of the sectors and traf�c
patterns in our data.

The remainder of this paper is organized as follows: Sec-
tion II gives some background on ATC complexity and air
traf�c controller workload, and states the objectives of the
work presented in this paper. Section III is a short introduction
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to machine learning. Section IV describes the gradient tree
boosting methodused in this study. The data and experimental
setup are described in section V. The results concerning
the generalization performance on fresh sectors are given in
section VI, and those concerning the relationship between
complexity and workload are given in section VII. The paper
concludes with a brief summary of our �ndings and the
perspectives of future works, in section VIII.

II. BACKGROUND AND OBJECTIVES

A. ATC complexity and air traf�c controller workload

In this paper, we are interested in the relationship between
ATC complexity and workload. Both of these concepts are
loosely de�ned in the literature ([2]), and before building
models relating one to the other, we need to quantify them.
Many ATC complexity indicators have been proposed in the
literature [2], [3], [4], and this paper proposes nothing new
in that matter. Quantifying the controller's workload has been
done through different kinds of measures: physical activity
([5], [6]), physiological indicators ([7], [8], [9]), or subjective
ratings ([10], [11]). Some of these indicators are dif�cult to
interpret, and others are subject to biases (such as the recency
effect denounced in [8], and the possibility of raters errors
in the case of "over-the shoulder workload ratings" [12]).
Collecting these data requires heavy experimental setups, often
resulting in relatively small datasets and potential over�tting
issues when trying to adjust a model on too few examples.

In order to avoid these drawbacks, we have proposed in
previous work ([13], [14], [15]) to use historical records of
the past sector operations to quantify the workload. These
records are available in large quantity, for a large number
of sectors. The information that can be extracted from the
past sector operations is the following: we can assume that
the workload was normal when the sector was operated, low
when it was merged with other sectors to form a larger sector,
and high when it was split into smaller sectors assigned to
several working positions.

Several approaches have been tried to build models relating
ATC complexity to workload. For example, taskload models
([16], [17]) compute the cumulative time required to execute
control tasks. Linear regression models such as the popular
dynamic density models ([18], [10]) approximate subjective
workload ratings by a linear combination of a number of
ATC complexity measures. Other works use a neural network
instead of a linear model ([11]) to approximate subjective
ratings.

In previous work, we also used neural networks, but our
target variable was the workload measured from the past
sector operations instead of subjective ratings. Considering an
initial set of 27 complexity metrics found in the literature, we
selected a subset of relevant metrics for the purpose of building
a model that could be used to predict future airspace con�g-
urations ([13], [14], [15]). We showed that this concept was
feasible and could be used to forecast airspace con�gurations
that were much more realistic than the actual sector opening
schedules made by the Flow Management Positions ([19],

[20]). The concept was demonstrated on a mock-up HMI using
static data ([21]). In [1], we compared the performances of
several machine learning methods using the six selected ATC
complexity metrics as input. The results showed that gradient
boosted trees and neural networks performed better than basic
classi�cation methods such as linear discriminant analysis,
quadratic discriminant analysis, or naive Bayes classi�ers.

B. Objectives

In all our previous works, the ATC sectors from which were
drawn our samples were approximately the same for both the
training and test sets. The test data was simply taken in a
different time interval than the training data, in order to assess
the generalization performance of the trained models on fresh
inputs (although in the same sectors).

In this paper, our �rst objective is to check if a model trained
on a subset of sectors can perform well on another subset
of sectors. Our concern is that the trained model might not
perform well on elementary sectors, for which there are no
occurences of “high” workload in the training data (as well as
in the test data). A second objective is to examine more closely
the relationship between the input variables (ATC complexity
metrics) and the workload to determine if we actually learn a
model of the cognitive workload of the air traf�c controller,
or if we also learn some characteristics of the observed data.

III. A S HORT INTRODUCTION TOMACHINE LEARNING

This section is a brief introduction to machine learning. The
reader may refer to [22], [23], [24] for a more thorough view
of this active research �eld.

Learning from data with a computer can be done in different
ways, through supervised learning, unsupervised learning, or
reinforcement learning. In reinforcement learning, a sofware
agent takes actions in a given environment so as to maximize
a cumulative reward. In supervised or unsupervised learning,
given some featuresx of an observed phenomenon, the objec-
tive is to learn a model from a set of examples(x1; : : : ; xN ).
Unsupervised learning considers the explanatory variablesx
either to produce clusters of data, or to estimate the probability
density ofx, using the examples(x1; : : : ; xN ). In supervised
learning, we assume a relationshipy = f (x) betweenx
and a target variabley, and we use examples of the outputs
(y1; : : : ; yN ) associated with the inputs(x1; : : : ; xN ) to learn
a modelh approximatingf .

In this paper, supervised learning techniques are used to
predict the workload from ATC complexity indicators. The
target variabley is here a workload category (low, normal,
or high) and the inputx is a vector of complexity indicators
computed from the traf�c or the sector geometry.

Such learning problems where the target is a categorical
variable are usually referred to as classi�cation problems, as
opposed to regression problems wherey is a �oating-point
value or a vector of �oats.

Given aloss function ` such that̀ (y; by) is the cost of the
error between the computed outputby = h(x) and the observed
datay = f (x) , our objective is to chooseh minimizing the
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following risk (i.e. the expected loss), whereX andY are the
randomvariables from which are drawnx andy:

R( h) = EX;Y
�
`(Y; h(X ))

�
=

Z

X �Y
`(y; h(x)) PX;Y (dx; dy)

(1)

A. Learning from a �nite dataset

In practice, the joint distribution ofX andY is not known
and one can only approximatef using a set of examplesS =
f(x 1; y1); : : : ; (xN ; yN )g of �nite size.

The most straightforward idea is then to select the modelh
minimizing the following empirical risk:

R emp (h; S) =
1

jSj

X

(x n ;yn )2 S

`(yn ; h(xn )) (2)

Unfortunately, minimizing the empirical risk onS might not
lead to the most desirable model. The selected model might �t
the examplesf(x 1; y1); : : : ; (xN ; yN )g of S very well, while
performing poorly on new instances ofx1.

Statistical models can be more or less “�exible” when
�tting the data, depending on their analytical expression. For
example, a linear model is much less likely to over�t the data
than a polynomial of high degree. Selecting the best model
among a collection of models of various “�exibilities” requires
a bias-variance tradeoff. Simple models tend to have a high
bias (i.e. they are far from truth) and a low variance (i.e. the
response of the model is about the same, whatever the training
set used to tune it). In contrast, complex models have low
bias and high variance. A complex model tuned on too few
examples tends to over�t these examples and to perform poorly
on new inputs.

B. Model assessment and selection

There are several ways to control over�tting and to �nd a
suitable bias-variance tradeoff. One can use an information
theory criterion, such as AIC (Akaike's “An Information
Criterion”) or BIC (Schwartz's Bayesian Information Crite-
rion). These asymptotic criteria add a penaltyP depending
on the model complexity to the empirical riskR emp (h; S)
de�ned in equation (2). The model having the lowest value of
R emp (h; S) + P is selected.

Another way to proceed is to assess empirically the gener-
alization error. Let us denoteA the algorithm used to learn a
model from a datasetS. In holdout cross-validation, the initial
datasetS is split into two sets: a training setST used to learn
the models, and another setSV used to assess the holdout
validation errorErr val as de�ned by the equation below:

Err val(A; ST ; SV ) = Remp(A[ST ]; SV ): (3)

The model having the lowest holdout validation error is
selected.

1For example, let us assume we �t a polynomial curve on10 points. For
this regression problem, a polynom of degree9 will �t exactly the examples,
but will give poor predictions at other points. For a classi�cation problem,
the same over�tting problem might occur when using aK -nearest-neighbours
method withK = 1.

K -fold cross-validation is another popular empirical
method, where the datasetS is partitioned into k folds
(Si )1� i� k . Let us denoteS� i = SnSi . In this method,k
separate predictorsA[S� i ] are learned from thek training sets
S� i . The mean of the holdout validation errors is computed,
giving us the cross-validation estimation below:

CVk (A; S ) =
kX

i=1

jSi j
jSj

Er r val(A; S � i ; Si ): (4)

When used for model selection, cross-validation can be per-
formed successively on a collection of models. The model
having the best cross-validation error is selected.

C. Hyperparameter tuning

In many methods, the bias-variance tradeoff is controlled
through one or several parameters. For example, one can think
of the number of hidden units in a neural network, or the
weight decay hyperparameter. Hyperparameter values can be
selected through cross-validation.

Let us denote� the vector of hyperparameters of an
algorithmA � . In this paper, a5-fold cross-validation has been
used to tune hyperparameters, as described in algorithm 1.

Algorithm 1 Hyperparameter tuningfor an algorithmA � and
a set of examplesT (training set).

function TUNEGRID(A � ,grid)[T ]
� �  argmin

� 2 grid
CV10(A � ; T)

return A � � [T ]
end function

IV. T HE GRADIENT TREE BOOSTING METHOD

In our experiments, we used the statistical softwareR, and
more speci�cally theXgboost library for gradient boosted
trees.

The stochastic gradient boosting tree algorithm was intro-
duced in [25], [26], [23]. It applies functional gradient descent
to classi�cation or regression trees ([27]).

The functional gradient descent is aboosting technique.
The modelh is iteratively improved. Denotinghm the current
model at iterationm, we consider the opposite gradient of
the loss gi = � @(̀ŷ;y i )

@̂y (h (x i ) ; yi ). A model g is then
tuned to �t this opposite gradient, using a set of examples
(x i ; gi )1� i� n . The model h is then updated as follows :
hm +1 (x) = hm (x) + �g (x) , where � is a constant mini-
mizing the empirical risk. The next iteration repeats the same
procedure forhm +1 until a maximum number of iterations
is reached. In stochastic gradient boosting, the dataset is
randomly resampled at each iteration.

In the Gradient Tree Boosting, the machine learning algo-
rithm boosted by the functional gradient descent is a classi-
�cation or regression tree algorithm. Before continuing our
description of gradient boosted trees, let us say a few words
on classi�cation and regression trees (CART) which were
introduced by Breiman in [27]. In this algorithm, a binary tree
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is used to represent a binary recursive partition of the input
space. Ateach node, the input space is split in two regions
according to a conditionx j � s. The J leaves of this tree
describe a partition(Rj )1� j � J of the input space. Each region
Rj is associated to a constant
 j . In the case of regression, it
will be a constant �oat value (usually the average value of the
examples in regionRj ). In classi�cation trees,
 j will be a
class (the most represented class among the examples inRj ).
When the tree is used to make a prediction on a new inputx,
the value
 j is returned whenx falls into Rj .

CARTs have some advantages. For example, they are insen-
sitive to input monotonic transformations: Usingx j , log(x j )
or exp(x j ) leads to the same model. As a consequence, this
algorithm is robust to outliers. It can easily handle categorical
variables and missing values. However it is known to have a
poor performance in prediction. This performance is greatly
improved however when applying gradient boosting to CART.

In gradient boosted trees, the equation of the model update
is the following, where� is a shrinkageparameter:

hm : x ! hm � 1(x) + �
X

R j 2 Tm


 mj 1R j (x) (5)

We can denote GBM(m;J;� ) the gradient boosted tree al-
gorithm, wherem is the number of boosting iterations,J
is the number of leaves of the tree and� is the shrinkage
parameter. The �nal model obtained after boosting is a sum
of regression or classi�cation trees.J allows us to control the
interaction between variables, as we haveJ � 1 variables at
most in each tree.� is the learning rate. In [23] (chap. 10), it is
recommended to take small values for the shrinkage parameter
(� < 0:1) and small values forJ as well (4� J � 8). The
hyperparameter grid used for this algorithm is presented in
section V-E.

V. DATA AND EXPERIMENTAL SETUP

A. Explanatory variables

In this study, ATC complexity indicators are used as inputs
to our models. In previous works ([13], [28], [15]), we selected
6 basic complexity metrics among27 metrics found in the
literature. We used a principal component analysis to reduce
the dimensionality of the inputs, and then selected the most
relevant metrics related to the signi�cant components. The6
metrics that were found to be the most relevantfor the purpose
of building airspace con�guration prediction modelsare the
following:

� vol, the airspace volume of the considered ATC sector,
� nb, the number of aircraft within the sector boundaries at

time t,
� �ow15, the incoming traf�c �ow within the next 15

minutes,
� �ow60, the incoming traf�c �ow within a 1 hour time

horizon,
� avg_vs, the average absolute vertical speed of the aircraft

within the sector,
� inter_hori, the number of speed vector intersections with

an angle greater than20 degrees.

These metrics are fairly simple and can be computed from
radar tracks and static sector data (geometrical boundaries).

In the current paper, we have chosen to use the same
metrics. They are standardized so as to obtain explanatory
variables with mean0 and standard deviation1. These stan-
dardized variables are used as input vectorx in our models.

B. Target variable

The target variabley we are trying to predict with our
models is a workload category:low, normal, orhigh. In order
to build our examples, we extracted this workload variable
from historical airspace con�guration data. In many cases,
the workload in an ATC sectors at a past timet can be
quanti�ed by considering how it was operated at that time
t. We simply make the following assumptions about the
relationship between sector operation and workload:

� Low workload when sectors is collapsed with other
sectors to form a larger sector operated on a working
position,

� Normal workloadwhen the sectors is operated as is,
� High workloadwhens is split into several smaller sectors

operated on different working positions.

The other possible states – such as when a part ofs is collapsed
with one sector and another part is collapsed with another
sector – are useless for quantifying the workload and are not
used.

C. Dataset

The datasets used in this study are built from radar tracks
and recorded sector operations from two weeks in October
2016 (13th to 26th ), from the �ve french ATC control centers
(Aix, Bordeaux, Brest, Paris, and Reims). For a given ATC
sector, we sample the data so as to balance the occurences
among the workload classes having non-zero occurences in
the initial data. For example, for elementary sectors (or other
sectors) for which there is no occurence in the high workload
category2, we sample an equal number of instances in the low
and normal categories.

We then select all the sectors with non-zero occurences
of the “normal” workload category (i.e., sectors that were
opened at one moment or another). As a result, we obtain
50389 samples in the low workload category,57539 in the
normal workload category, and21372 samples in the high
workload category. This dataset is then completed by drawing
samples from the sectors having no occurences of normal
workload (i.e. sectors that were never opened). The resulting
dataset comprises57539, 57539, and32800 samples in the
low, normal, and high workload categories, respectively.

This procedure is different from the one adopted in our
previous work [1], where our dataset was built so as to

2By de�nition, elementary sectors cannot be split, so there is no occurence
of “high” workload according to our de�nition of workload based on the
sector status (merged, collapsed, or split).
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obtain an overall balance among the three classes3, without
consideringthe balance in each subset corresponding to each
sector. The resulting dataset contains147878complexity and
workload samples concerning163elementary sectors and369
ATC sectors made of several elementary airspace sectors.

Note that the chosen data sampling procedure does not
provide an exactly equal representation of the three classes
in the resulting subset. One reason is that there exists no
instance of the “high” workload class in the initial data for
elementary sectors4. Even for ATC sectors made of several
airspace sectors, the sample might be imbalanced, for example
when the sector is opened for very large periods throughout
the day (i.e. there might not be enough data of the low or high
class from which to draw samples).

D. Performance evaluation and model selection

Our aim is to assess the performance of a model trained on
a dataset extracted from past ATC sector operations, checking
if this model generalizes well on new sectors that were not
used to train the model. Consequently, our dataset must be
split so that any ATC sector present in the subset used to train
a model is not represented in the subset used to assess the
model.

In addition, we would like examine how the trained model
performs on ATC sectors made of only one elementary
airspace sector. Considering these objectives, we use a nested
cross-validation procedure, strati�ed so that the proportion of
elementary sectors and collapsed sectors is about the same in
all subsets.

The nested cross-validation consists in an outer7-fold cross-
validation for model performance assessment, embedding an
inner5-fold cross validation for hyperparameter selection. The
datasetS is split in 7 subsetsSi , 1 � i � 7. For each iteration
i, a model is trained onS� i = SnSi , and its performance is
assessed onSi . The training onS� i follows a 5-fold cross-
validation procedure (the inner cross-validation), in order to
select the best hyperparameter values for the chosen machine
learning method (model selection). This is done by splitting
S� i into 5 subsetsS� i;j , 1 � i � 5. A grid of hyperparameter
values is used to tune several models onS� i;� j = S� i nS� i;j ,
and the performance of these models are evaluated onS� i;j .
The hyperparameter� � providing the best performance on
the subsetsS� i;j is then selected, and a �nal model with
hyperparameter� � is trained on S� i . This is the model
evaluated onSi in the outer cross-validation.

This procedure is more computationally intensive than the
one chosen in our previous work [1], where the outer cross-
validation was a simple holdout validation, where the dataset

3Note that the dataset description in section III-C of [1] is partly incorrect:
although only sectors that were actually opened were initially selected,
the dataset was completed using sectors that were not opened during the
considered time period, in order to balance the number of instances among
the three workload categories.

4By de�nition, elementary sectors cannot be split into several smaller sector,
so we cannot measure high workloads for such sectors with the chosen target
variable (the sector status).

was split into a training set and a test set only, instead of a7-
fold cross-validation. The new procedure has the advantage to
provide some evaluation of the distribution of the performance
results (considering the subsetsSi ).

Also, in our previous paper, there were a large number of
sectors overlapping in both the training and test sets. We were
interested in evaluating how a model trained on one week of
data would generalize on another week of data (the test set).

In the current paper, a different question is being adressed,
motivating the change of procedure. We want to check if a
model trained on a subset of sectors can generalize well on
another subset of sectors, and if our model over�ts the data
for elementary sectors.

Knowing that there is no data with high workload available
for the elementary sectors in our training sets, we might expect
the model to over�t the training data and to generalize poorly
on fresh examples, for elementary sectors. Hovever, it should
generalize correctly on the other sectors.

E. Hyperparameter grids

The hyperparameter selection of the inner cross-validation
is performed on the training set, using functionTuneGridof
algorithm 1 and the grids described in table I.

Method Hyperparameter grid

GBM(m; J;� )

m = f5000; 6000; 7000g
J = f2; 3; 4g
� = f1e-4, 5e-4, 1e-3,1e-2,1e-1g

Table I: Grid of hyperparameters used in our experiments.

F. Classi�cation performance metrics

In this paper, the performance of a classi�er is assessed
through its accuracy, recall and precision. Accuracy is the
total number of correct predictions made divided by the
total number of predictions. Recall is the number of correct
predictions made for one class, divided by the actual number
of occurences in the considered class. Precision is the number
of correct predictions made for one class divided by the total
number of instances predicted to be in that class.

Reference

Predicted
C1 C2 C3

C1

C2

C3

a b c

d e f

g h i

Figure 1: Illustration of a confusion matrix.

In otherwords, considering the example of a confusion ma-
trix on Figure 1, accuracy, precision and recall are computed
as follows:

Accuracy =
a + e+ i

a + b+ c + d + e+ f + g + h + i

Recall(C1) =
a

a + d + g
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P recision( C1) =
a

a + b+ c

VI . RESULTS WHEN GENERALIZING ON FRESH SECTORS

In this section, we examine the performance of the GBM
model when generalizing on fresh data taken from sectors that
were not used when tuning the model. The model performance
is assessed on several sub-populations of ATC sectors:

� All ATC sectors (elementary, or not),
� Elementary sectors,i.e. sectors that cannot be split into

smaller sectors, and for which there is no occurence of
the “high workload” class5,

� Non-elementary sectors,i.e. ATC sectors made of several
elementary airspace sectors, for which we detail the
following results :

– Overall performance on the non-elementary sectors
– Model performance on non-elementary sectors for

which there is no instance of the “high workload”
class in the data.

A. Overall performance, all sectors included

Table II shows the performance of the GBM model, when
including all sectors in the performance assessment. The �rst
line shows the mean rates of correct classi�cations, and the
standard deviations (within brackets). The overall rate of
correct classi�cation (2nd line, 2nd column) is the accuracy,
and the class-speci�c rates (2nd line, columns3,4, and5) are
the recall. The precision of the model is given on the last
line, where the overall precision is the average over the three
classes.

The mean values and standard deviations are computed
from the7 folds of the cross-validation, considering only the
validation subsetsSi (not used to train the model).

Overall Low Normal High
Correct classif. 0.759 0.757 0.736 0.808

(0.03) (0.046) (0.074) (0.100)
Precision 0.771 0.817 0.680 0.815

(0.034) (0.065) (0.042) (0.112)

Table II: Model performance averaged over7 folds, for all
ATC sectors, using the GBM method.

B. Results for elementary sectors

Table III shows the correct classi�cation rates (overall
accuracy, and class-speci�c recall), as well as the precision
of the GBM model, for the control sectors made of only one
elementary airspace sector. Such sectors cannot be split so as
to alleviate the workload. As a consequence, there is no data
concerning the “high” workload for these sectors.

For these results, the models trained in each fold of the
cross-validation are exactly the same as in the previous subsec-
tion. They are trained on the same training subsets as before.
However, the model performance is here evaluated considering
only the elementary sectors in the validation subsets.

5With the chosen target variable, high workload can be observed only when
the sector is split into several smaller sectors.

Overall Low Normal High
Correct classif. 0.82 0.904 0.507 NaN

(0.092) (0.062) (0.197) (NA)
Precision 0.519 0.856 0.539 0

(NA) (0.112) (0.271) (NA)

Table III: Model performance averaged over7 folds, for
elementaryairspace sectors only, using the GBM method.

C. Results for ATC sectors made of several airspace sectors

Table IV shows the results (correct classi�cation rates and
precision) obtained for the control sectors made of several
elementary airspace sectors.

Overall Low Normal High
Correct classif. 0.757 0.739 0.748 0.808

(0.029) (0.041) (0.060) (0.100)
Precision 0.769 0.814 0.679 0.815

(0.031) (0.068) (0.047) (0.112)

Table IV: Model performance averaged over7 folds, for ATC
sectors made of several elementary airspace sectors, using the
GBM method.

Table V details the results for the non-elementary sectors
for which there is no occurence of the “high workload” class
in the data, similar in that respect to the elementary sectors.

Overall Low Normal High
Correct classif. 0.738 0.713 0.760 NaN

(0.033) (0.058) (0.089) (NA)
Precision 0.504 0.784 0.729 0.000

(0.020) (0.087) (0.056) (0.000)

Table V: Model performance averaged over7 folds, for
non-elementarysectors having no data instances in the “high
workload” category.

When comparing the results in tables IV, V and III, we see
that the model performance drops for the elementary sectors,
with a recall barely above50 % for the “normal workload”
class, but that it remains good for non-elementary sectors in
general, and even those with no occurence of high workload.
This tends to show that our model over�ts the data taken from
elementary sectors speci�cally, and generalizes poorly on these
sectors but not on the others. One reason might be that there
are no other sectors in our data that would be similar to the
elementary sectors in size and characteristic, and that would
be well-balanced among the three classes. By contrast, we can
�nd a lot of data samples from well-balanced (non-elementary)
sectors having sizes and characteristics similar to the non-
elementary sectors having no high workload occurence. This
might explain why our model still generalizes correctly on
these sectors.

This is a good result, as it means we can still use our work-
load model to �nd optimal combinations of sectors, although
we should replace or amend our model when assessing the
workload in elementary sectors.
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show that high values ofavg_vsare moreacceptable to the
controllers for small values ofnb than for high values, at least
for this sector. A similar shape can be observed on many
other sectors. So, within the normal workload category, our
intuition that the cognitive workload increases with the number
of climbing/descending aircraft might actually be true.

This relationship is simply dif�cult to observe at the macro-
scopic level: the median values ofavg_vsare about the same
whatever the workload category, which simply re�ects the fact
that there are no more climbing/descending aircraft, in our
data, when the sector is split than when it is normally operated
or collapsed.

In addition, the in�uence ofavg_vsmust be considered
across all the sectors. When doing so, and when combining it
with other variables such as the sector volume, the average ver-
tical speedavg_vsdoes in�uence the workload categorization,
as was shown in previous work on the selection of relevant
explanatory variables ([13], [28], [15]). It remains to be seen
if, for our purpose, it could be replaced with a categorical
variable characterizing the sector (en-route, orpre-approach,
for instance).

VIII. C ONCLUSION

Let us now conclude this paper by summarizing our ap-
proach and our �ndings. We have looked into the performances
of a workload model learned from historical data, using
gradient boosted trees. The examples used to learn the model
were made of ATC complexity measurements computed from
radar records and sector data, and workload measurements
extracted from past ATC sector operations. The three levels
(low, normal, high) only give a rough indication of the work-
load. However, this workload measurement has the advantage
of being easily available, in large quantities and for a great
number of ATC sectors, because it can be directly extracted
from historical records of past sector operations.

In previous works, this model showed an82%rate of correct
classi�cations, when training the model on one week of traf�c,
and assessing it on another week, considering approximately
the same set of sectors in both the training and the test set.
In the current work, our �rst objective was to look into the
model's performances when the model is trained on a subset
of sectors and assessed on a different subset. Our second
objective was to examine more closely the relation between
the input ATC complexity variables and the output (i.e. the
workload class).

The results show that the overall performance of the model
is slightly degraded, with a rate of correct predictions around
76%, when the training and test sets are geographically segre-
gated (different sectors) instead of being temporally segregated
like in our previous approach. The detailed results show that
our model probably over�ts the training data for elementary
sectors, leading to poor generalization performance for these
sectors. However, the model remains performant on all non-
elementary sectors, even those having no occurence of the high
workload class in the data.

Concerning the relations betwen the input variables and the
workload output, the bagplots of section VII con�rm some
natural intuitions on the sense of variations of these quantities
for most variables, except maybe for one, the average absolute
vertical speed of all aircraft in the sector. For all variables
except this one, we observe on two instances of sectors (one
en-route and one pre-approach sector) that when the input ATC
complexity metric increases, we are more likely to be in a
higher workload category.

A natural intuition is that the cognitive workload of the
controller should also increase when there are more climbing
and descending aircraft in the sector, just as for the other vari-
ables. This relationship is most probably true, but it is dif�cult
to observe in our macroscopic workload categorization, except
maybe by looking closely at the dispersion of the data in the
normal workload category.

To conclude, the model obtained with the GBM machine
learning method cannot be interpreted only as a model of
the cognitive workload of the controller. The model expresses
relations among variables emerging from the data, and it
can only be as good as the data that was used to train it.
It cannot be transposed to any context without precautions.
The fact that our workload model remains performant for
all non-elementary sectors con�rms that it can actually be
used to predict optimal con�gurations of ATC sectors (sector
opening schemes), where we only search to split or merge
sectors optimally. This model should be completed or replaced
by a more simple model when evaluating the workload in
elementary sectors.

In future works, we might try to produce some arti�cial
data samples of the “high” workload class for elementary
sectors. This would force our model to correctly assess the
boundary between normal and high workload for these speci�c
sectors. Another approach that we could try is to apply one-
class classi�cation methods on the “normal” workload class, to
detect when non-normal instances (underloads, or overloads)
occur in elementary sectors. Other work might consider the
seasonal variability in our data. It would be interesting to
compare the performances of a same model tuned several times
on data samples of different months.
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