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Abstract—In this paper, we assess the performance of a This problem has been addressed in several ways since
Worklload mod.el trained on a subset of sectors, focu§|ng on the beginings of air traf ¢ control (ATC). Depending on the
how it generalizes on fresh sectors. The model of the air traf ¢ context and purpose, one might count the movements on an

controller workload is learned from historical data made of . ¢ th b f ai ft within the b dari f
workload mesurements extracted from past sector operations and 2!fPOrt, Or theé number of arcraft within theé boundaries o

ATC complexity measurements computed from radar records @n €n-route sector, or the incoming ow of trafc over a
and airspace data (sector geometry). time period. Such basic metrics — and the associated threshold

The workload is assumed to be low when a given sector is values (capacities) — provide simple and straightforward an-
collapsed with other sectors into a larger sector, normal when it qvars to the question of deciding whether the controllers are

is operated as is, and high when it is split into smaller sectors . . | Kload when handli . traf
assigned to several working positions. This learning problem is experiencing a normal workioad when handling given trarc,

modeled as a classi cation problem where the target variable OF if they are overloaded.
is a workload category (low, normal, high) and the explanatory However, it has been aknowledged for a long time that
variables are the air traf ¢ control (ATC) complexity metrics. simple metrics, such asrcraft count, do not adequately re ect

rggle%e"_irohues n\w/\(l)?j”élls V\‘,’fergotrpaeg;%dOzegﬁ;alvvcel(‘:‘;séfezrsafocn ;wg the complexity of air traf ¢ control. ATC complexity covers
tpheir generalization performance was assessed on anothér Weekdynamlc aspects relative to the trafc, static aspects relatlv_e
of traf ¢, using the same sectors in both the training and test t0 the sector geometry and route network, and aspects relative
sets. to the air traf ¢ control procedures.

In the current work, we examine if models learned on a speci c In this paper, we are interested in examining more closely

set of sectors can be performant on any other sector, or not. We {1 relationship between ATC complexity metrics and work-

also give a closer look at how the workload varies with the ATC . . :
complexity measures in our data, using bagplots of the data load, using a gradient boosted tree model selected in our

points for a few sector instances. The results allow us to better prev_ious WO”_( [1]. _ThiS model is trained on historical_ data
understand the strengths and limits of our data-driven model. ~ of aircraft trajectories and past sector operations. This data

Keywords—Air traf c control, ATC complexity, workload, is made of complexity measures computed from radar tracks
machine learning, airspace con guration and sector data, and workload measures extracted from the
status of the control sectors (collapsed, opened, or split into
smaller sectors). We have shown in previous works that such

Predicting the workload of air traf ¢ controllers is of cruciala model provides correct predictions in more tt8296 of the
importance to the safety of the air traf c management (ATMgases, when training the model on one week of trafc in all
system at large. Overloads might lead to potentially dangerahe french sectors, and when assessing the results on another
situations where some con icts might not be detected in timeeek of traf c in approximately the same sectors.
by the controllers. Our aim here is to check if such a model can be trained on

Predicting the workload with good accuracy is also a subset of sectors, and still generalize well on fresh sectors.
question of ef ciency. In day-to-day operations, the airspada addition, we want to verify if some intuitive notions on
is dynamically recon gured according to the controller workthe relationship between complexity and workload — such as
load. Underloaded sectors are collapsed to form larger sectdifsthis complexity value increases, then the workload should
and overloaded sectors are split into several smaller sectbeshigher” — are actually true for our data. In other words,
operated separately. When it is not possible to absorb tive would like to know if our model actually captures the
traf ¢ simply by recon guring sectors, the traf ¢ is delayed relationship between the cognitive workload of the controller
or rerouted so as to avoid the congested areas. This needarnd the complexity metrics, or if our data-driven approach also
be done well in advance, usually before the aircraft take offaptures some of the characteristics of the sectors and traf c
Predicting with greater accuracy which ATC sectors shall matterns in our data.
operated at what time and which of these sectors might gefThe remainder of this paper is organized as follows: Sec-
overloaded would improve the whole traf ¢ regulation procession [[T] gives some background on ATC complexity and air
This requires a realistic and accurate workload model, whittaf c controller workload, and states the objectives of the
is the subject of this paper. work presented in this paper. Sectjor Il is a short introduction

I. INTRODUCTION
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to machine learning. Sectidn ||V describes the gradient trf#0]). The concept was demonstrated on a mock-up HMI using
boosting methodised in this study. The data and experimentatatic data ([2[1]). In[[1], we compared the performances of
setup are described in sectipn V. The results concernisgveral machine learning methods using the six selected ATC
the generalization performance on fresh sectors are givencomplexity metrics as input. The results showed that gradient
section[V], and those concerning the relationship betwebnosted trees and neural networks performed better than basic
complexity and workload are given in section VIl. The papeslassi cation methods such as linear discriminant analysis,
concludes with a brief summary of our ndings and theuadratic discriminant analysis, or naive Bayes classi ers.

erspectives of future works, in sectipn VIII. o
PETSP by B. Objectives

[I. BACKGROUND AND OBJECTIVES ; ;
In all our previous works, the ATC sectors from which were

A. ATC complexity and air traf ¢ controller workload drawn our samples were approximately the same for both the
In this paper, we are interested in the relationship betwettaining and test sets. The test data was simply taken in a
ATC complexity and workload. Both of these concepts awdifferent time interval than the training data, in order to assess
loosely de ned in the literature [([2]), and before buildingthe generalization performance of the trained models on fresh
models relating one to the other, we need to quantify theinputs (although in the same sectors).
Many ATC complexity indicators have been proposed in the In this paper, our rst objective is to check if a model trained
literature [2], [3], [£], and this paper proposes nothing nean a subset of sectors can perform well on another subset
in that matter. Quantifying the controller's workload has beedf sectors. Our concern is that the trained model might not
done through different kinds of measures: physical activiggerform well on elementary sectors, for which there are no
([5], [6]), physiological indicators [([7],018],[19]), or subjective occurences of “high” workload in the training data (as well as
ratings ([10], [11]). Some of these indicators are dif cult tan the test data). A second objective is to examine more closely
interpret, and others are subject to biases (such as the recgheyrelationship between the input variables (ATC complexity
effect denounced in[8], and the possibility of raters errorgetrics) and the workload to determine if we actually learn a
in the case of "over-the shoulder workload ratings"| [12])nodel of the cognitive workload of the air traf c controller,
Collecting these data requires heavy experimental setups, ofterif we also learn some characteristics of the observed data.
resulting in relatively small datasets and potential over tting
issues when trying to adjust a model on too few examples.
In order to avoid these drawbacks, we have proposed inThis section is a brief introduction to machine learning. The
previous work ([18], [[14], [[15]) to use historical records ofeader may refer to [22]( [23]. [24] for a more thorough view
the past sector operations to quantify the workload. Theskthis active research eld.
records are available in large quantity, for a large numberLearning from data with a computer can be done in different
of sectors. The information that can be extracted from theays, through supervised learning, unsupervised learning, or
past sector operations is the following: we can assume thainforcement learning. In reinforcement learning, a sofware
the workload was normal when the sector was operated, l@gent takes actions in a given environment so as to maximize
when it was merged with other sectors to form a larger sectarcumulative reward. In supervised or unsupervised learning,
and high when it was split into smaller sectors assigned ¢iven some features of an observed phenomenon, the objec-
several working positions. tive is to learn a model from a set of examplgs;:::;Xn).
Several approaches have been tried to build models relatidgsupervised learning considers the explanatory variables
ATC complexity to workload. For example, taskload modelsither to produce clusters of data, or to estimate the probability

1. A SHORTINTRODUCTION TOMACHINE LEARNING

control tasks. Linear regression models such as the popuiarning, we assume a relationshyp = f (x) betweenx
dynamic density models[([18]T10]) approximate subjectivend a target variablg, and we use examples of the outputs

ATC complexity measures. Other works use a neural netwaakmodelh approximatingf .

instead of a linear model[([11]) to approximate subjective In this paper, supervised learning techniques are used to

ratings. predict the workload from ATC complexity indicators. The
In previous work, we also used neural networks, but otmrget variabley is here a workload category (low, normal,

target variable was the workload measured from the pasthigh) and the inpuk is a vector of complexity indicators

sector operations instead of subjective ratings. Considering@mputed from the traf ¢ or the sector geometry.

initial set of 27 complexity metrics found in the literature, we Such learning problems where the target is a categorical

selected a subset of relevant metrics for the purpose of buildivayiable are usually referred to as classi cation problems, as

a model that could be used to predict future airspace con gpposed to regression problems whereés a oating-point

urations ([138], [[14], [[15]). We showed that this concept wagalue or a vector of oats.

feasible and could be used to forecast airspace con gurationsGiven alossfunction ™ such that (y;#) is the cost of the

that were much more realistic than the actual sector openiagor between the computed outfut h(x) and the observed

schedules made by the Flow Management Positions ([18htay = f (x), our objective is to choosk minimizing the
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following risk (i.e. the expected loss), wheXeandY are the K -fold cross-validation is another popular empirical
randomvariables from which are drawx andy: method, where the datas& is partitioned intok folds
Z (Si); i - Let us denoteS ; = SnS. In this method,k
R(h) = Exy “(Y;h(X)) = (y;h(x)) Pxy (dx;dy) separate predicto’s[S ;] are learned from thk training sets
XY S i. The mean of the holdout validation errors is computed,
@) giving us the cross-validation estimation below:

A. Learning from a nite dataset X ]
In practice, the joint distribution ok andY is not known CW(A;S) = ﬁEr Nal(A;S i;S): 4)
and one can only approximateusing a set of exampleS = =1
f(X 1;y1); 000 (Xn ;YN )9 Of nite size. When used for model selection, cross-validation can be per-
The most straightforward idea is then to select the mbdelformed successively on a collection of models. The model
minimizing the following empirical risk: having the best cross-validation error is selected.
1 X :
Remp(;S) = — (Y h(Xn)) (2) C- Hyperparameter tuning
(Xniyn)2S In many methods, the bias-variance tradeoff is controlled

through one or several parameters. For example, one can think
to{ the number of hidden units in a neural network, or the
weight decay hyperparameter. Hyperparameter values can be

performing poorly on new instances selected through cross-validation.
Statistical models can be more or less “exible” when L€t us denote the vector of hyperparameters of an

tting the data, depending on their analytical expression. FE/9°MthmMA . In this paper, &-fold cross-validation has been
example, a linear model is much less likely to over t the dat4Sed t0 tune hyperparameters, as described in algofithm 1.
than a polynomial of high degree. Selecting the best model— - -
among a collection of models of various * exibilities” requires’9°"thm 1 Hyperparameter tuninfpr an algorithmA - and
a bias-variance tradeoff. Simple models tend to have a highSet Of €xamples (training set).

bias (i.e. they are far from truth) and a low variance (i.e. the function TUNEGRID(A ,grid)[T ]

response of the model is about the same, whatever the training argrn(ljn CVio(A ;T)

set used to tune it). In contrast, complex models have low ety Ag [T]

bias and high variance. A complex model tuned on too few gnd function

examples tends to over t these examples and to perform poorty

on new inputs.

Unfortunately, minimizing the empirical risk d& might not
lead to the most desirable model. The selected model migh

. IV. THE GRADIENT TREE BOOSTING METHOD
B. Model assessment and selection

There are several ways to control over tting and to nd a In our experiments, we used the statistical softwRreand
. X ) Y 9 . ‘more speci cally theXgboost library for gradient boosted
suitable bias-variance tradeoff. One can use an mformatl%es
té]r?t%r%orir)ltirrlogEcs?gth%ZrtglscBg\lézliZislnﬁ\)?mg]tfigrnmg?i(t)g- The stochastic gradient boosting tree algorithm was intro-
. ) s bay ; duced in[25],126],123]. It applies functional gradient descent
rion). These asymptotic criteria add a penaiydepending SR . T

to classi cation or regression trees ([27]).

32 ;23 ir:zdila;g?%?x%gomt:;eleg F\)/Iigcilhzﬁs\gs(th\;aslzje The functional gradient descent is kmosting technique.
d ' 9 0Ithe modelh is iteratively improved. Denoting,, the current

R?rﬁ(g[]r;esr)vtas tlj Sr('aoligteedd.is to assess empirically the gen n’rl_odel at iterationm, we consider the opposite gradient of
?he lossg = %(h(xi);yi). A model g is then

alization error. Let us denot& the algorithm used to learn at ned to t this obbesite aradient. using a set of examoles
model from a datased. In holdout cross-validation, the initial u IS opposite gradient, using xamp
(Xi;g)1 i n- The modelh is then updated as follows :

datasefS is split into two sets: a training s&; used to learn : o
P g s& Pm+1 (X) = hp(xX) + g(x), where is a constant mini-

the models, and another s8( used to assess the hOIdoumlzin the empirical risk. The next iteration repeats the same
validation errorErr 5 as de ned by the equation below: 9 P o ) peat .
procedure forhpn.1 until @ maximum number of iterations

Errva(A;S7;Sv) = Remp(A[ST]; Sv): (3) is reached. In stochastic gradient boosting, the dataset is

. _— randomly resampled at each iteration.

The model having the lowest holdout validation error is y ‘mp . . .

selected In the Gradient Tree Boosting, the machine learning algo-

’ rithm boosted by the functional gradient descent is a classi-
1For example, let us assume we t a polynomial curve khpoints. For ~ cation or regression tree algorithm. Before continuing our

this regression problem, a polynom of degeewill t exactly the examples, description of gradient boosted trees, let us say a few words

but will give poor predictions at other points. For a classi cation problem | . . d . CART hich

the same over tting problem might occur when using anearest-neighbours ?“ classi cation a_-n rggressmn tr_ees ( ! ) W_'C Wl

method withK = 1. introduced by Breiman in_[27]. In this algorithm, a binary tree
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is used to represent a binary recursive partition of the inputThese metrics are fairly simple and can be computed from
space. Ateach node, the input space is split in two regionsdar tracks and static sector data (geometrical boundaries).
according to a conditiorx; s. The J leaves of this tree In the current paper, we have chosen to use the same
describe a partitiofR; ) P of the input space. Each regionmetrics. They are standardized so as to obtain explanatory
Rj is associated to a constant. In the case of regression, itvariables with mear® and standard deviatioh. These stan-
will be a constant oat value (usually the average value of theardized variables are used as input vestan our models.
examples in regiorR;). In classi cation trees, j will be a
class (the most. represented class among the examplﬁ;).in B. Target variable
When the tree is used to make a prediction on a new irput
the value ; is returned whenx falls into R; . The target variabley we are trying to predict with our
CARTSs have some advantages. For example, they are insé@dels is a workload categorlow, normal, orhigh. In order
sitive to input monotonic transformations: Usimg, log(x;) t0 build our examples, we extracted this workload variable
or exp(x;) leads to the same model. As a consequence, tfigm historical airspace con guration data. In many cases,
algorithm is robust to outliers. It can easily handle categoriclle workload in an ATC sectos at a past timet can be
variables and missing values. However it is known to havedglanti ed by considering how it was operated at that time
poor performance in prediction. This performance is greatly We simply make the following assumptions about the
improved however when applying gradient boosting to CARTelationship between sector operation and workload:

In gradient boosted trees, the equation of the model update | ow workload when sectors is collapsed with other
is the following, where is as)fzrinkageparamaefi sectors to form a larger sector operated on a working
hn :x! h X) + 1e (X 5 position, . |
; m 1% R 2T mi 1, () ) Normal workloadwhen the sectos is operated as is,
L High workloadwhens is split into several smaller sectors

We can denote GBM,.;. ) the gradient boosted tree al- operated on different working positions.

gorithm, wherem is the number of boosting iterationd, he oth ib| h h I
is the number of leaves of the tree andis the shrinkage 1n€ Other possible states —such as when a parisfollapsed
th one sector and another part is collapsed with another

parameter. The nal model obtained after boosting is a su{ re
of regression or classi cation treed. allows us to control the SECOr — are useless for quantifying the workload and are not
interaction between variables, as we have 1 variables at used.

most in each tree. is the learning rate. In [23] (chap. 10), it is

recommended to take small values for the shrinkage paraméterDataset

(< 01)and sma!l values fod as well (_4 ‘]_ 8). The . The datasets used in this study are built from radar tracks
hypgrparameter grid used for this algorithm is presented dMd recorded sector operations from two weeks in October
section\ZE. 2016 (13" to 26™), from the ve french ATC control centers
V. DATA AND EXPERIMENTAL SETUP (Aix, Bordeaux, Brest, Paris, and Reims). For a given ATC
A. Explanatory variables sector, we sample the data so as to balance the occurences
hi d c lexity indi dasi among the workload classes having non-zero occurences in
In this ‘Ztul y, AT comp ex'tk{m |cat(;rs are use asllnpugqe initial data. For example, for elementary sectors (or other
to our models. In previous work{.(1 3. ]?8L.J15]), we selecte ectors) for which there is no occurence in the high workload

6_3 basic complexity metr_lcs_ among7 metrics foun_d in the categorﬁ]. we sample an equal number of instances in the low
literature. We used a principal component analysis to redugﬁd normal categories

:Zlee\(/jallrr?tegsel(t)r?casfItr}:alzftetgetc;Iqtﬁztssyi i?i;gfzosr‘?%c;g?‘t;h%;g OSWe then select all the sectors with non-zero occurences
metrics that were found to be the ?nost relevfaxnl?he ur .ose of the “normal” workload category (i.e., sectors that were
purp opened at one moment or another). As a result, we obtain

of bui_lding airspace con guration prediction mode&e the 50389 samples in the low workload catego§7539in the

following: , , normal workload category, and1372 samples in the high
vol, the airspace volume of the considered ATC sectoryqkjoad category. This dataset is then completed by drawing
nb, the number of aircraft within the sector boundaries @b mpjes from the sectors having no occurences of normal
timet, _ _ o workload (i.e. sectors that were never opened). The resulting
owl5, the incoming trafc ow within the next15  gaiaset comprise§7539, 57539, and32800 samples in the

minutes, ) . . , low, normal, and high workload categories, respectively.
hoo\’\r/gghthe incoming traf ¢ ow within a 1 hour time This procedure is different from the one adopted in our

. : Previous work [[1], where our dataset was built so as to
avg_vs, the average absolute vertical speed of the aircraft

within the sector, 2 iy . .

. hori. th b f d tor int ti .., “By de nition, elementary sectors cannot be split, so there is no occurence
inter_hori, the number of speed vector intersections Witl} «ign" workload according to our de nition of workload based on the
an angle greater tha?0 degrees. sector status (merged, collapsed, or split).
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obtain an overall balance among the three cI@s&'ﬂhout was split into a training set and a test set only, instead of a
consideringthe balance in each subset corresponding to eafthd cross-validation. The new procedure has the advantage to
sector. The resulting dataset contaii®s’878complexity and provide some evaluation of the distribution of the performance
workload samples concernirigh3 elementary sectors ar869 results (considering the subs&g.
ATC sectors made of several elementary airspace sectors. Also, in our previous paper, there were a large number of
Note that the chosen data sampling procedure does settors overlapping in both the training and test sets. We were
provide an exactly equal representation of the three classaterested in evaluating how a model trained on one week of
in the resulting subset. One reason is that there exists @ia would generalize on another week of data (the test set).
instance of the “high” workload class in the initial data for In the current paper, a different question is being adressed,
elementary sect<f_ﬂs Even for ATC sectors made of severamotivating the change of procedure. We want to check if a
airspace sectors, the sample might be imbalanced, for exampledel trained on a subset of sectors can generalize well on
when the sector is opened for very large periods throughanother subset of sectors, and if our model over ts the data
the day (i.e. there might not be enough data of the low or hidbr elementary sectors.

class from which to draw samples). Knowing that there is no data with high workload available
for the elementary sectors in our training sets, we might expect
D. Performance evaluation and model selection the model to over t the training data and to generalize poorly

Our aim is to assess the performance of a model trained %n fresh examples, for elementary sectors. Hovever, it should
P %%neralize correctly on the other sectors.

a dataset extracted from past ATC sector operations, check
if this model generalizes well on new sectors that were nBt Hyperparameter grids

used to train the model. Consequently, our dataset must berhe hyperparameter selection of the inner cross-validation
split so that any ATC sector present in the subset used to tr?énperformed on the training set, using functidaneGrid of

a model is not represented in the subset used to assessaﬁbﬁrithm[j and the grids described in tafle I.
model.

In addition, we would like examine how the trained model Method Hyperparameter grid
performs on ATC sectors made of only one elementary m = f5000; 6000; 7000g
. . . L GBM(m: 3; ) J = 12; 3;4¢g
airspace sector. Considering these objectives, we use a nested e = fle-4, 5e-4, le-3,1e-2,1e-1g

cross-validation procedure, strati ed so that the proportion of ] ] .
elementary sectors and collapsed sectors is about the same liaPle I Grid of hyperparameters used in our experiments.
all subsets.

The nested cross-validation consists in an o@tld cross- £ |assi cation performance metrics
validation for model performance assessment, embedding an

inner5-fold cross validation for hyperparameter selection. Tht In thk:s'tpaper, the perforlrln ancc:je of a .class'lo\er IS asgestsr:a d
dataseSS is splitin 7 subsetsS;, 1 i 7. For each iteration rough s accuracy, recall and precision. Accuracy IS the

i, a model is trained ors ;| = SnS;, and its performance is :o:a: numl?er (f)f CO(;.ri(.:t preF(zjlctlo”n_s made d“é'dedf by the;
assessed oB6;. The training onS ; follows a 5-fold cross- otal number of predictions. recall IS the number ot correc

validation procedure (the inner cross-validation), in order E))redlctmns made for one class, divided by the actual number

select the best hyperparameter values for the chosen machii geeurences in Fhe considered class. Preg|s_|on is the number
learning method (model selection). This is done by splittin correct predictions made for one class divided by the total
umber of instances predicted to be in that class.

S jinto5subsetsS ; ,1 i 5. Agrid of hyperparameter
values is used to tune several modelsSon ; = S inS j; , Reference
and the performance of these models are evaluatef on.

o~ : c1| c2 | c3
The hyperparameter providing the best performance on Predicted
the subsetsS ;; is then selected, and a nal model with 1] a b c
hyperparameter is trained onS . This is the model c2 | d e f

evaluated orf5; in the outer cross-validation.
This procedure is more computationally intensive than the
one chosen in our previous workl [1], where the outer cross- Figure 1: lllustration of a confusion matrix.
validation was a simple holdout validation, where the dataset
In otherwords, considering the example of a confusion ma-
3Note that the dataset description in section 1ll-Cldf [1] is partly incorrectrix on Figure[], accuracy, precision and recall are computed
although only sectors that were actually opened were initially selectegs follows:
the dataset was completed using sectors that were not opened during tﬁe ’ .
considered time period, in order to balance the number of instances among A r _ at e+l
the three workload categories. ccuracy = a+b+tct+td+e+f+g+h+i
4By de nition, elementary sectors cannot be split into several smaller sector,

so we cannot measure high workloads for such sectors with the chosen target Recall(C1) = a
variable (the sector status). a+d+g

C3 g h i
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. _ a Overall Low Normal | High
Precision(Cl) = ——— Correct classit.|| 0.82 || 0.904 | 0507 | NaN
(0.092) || (0.062) | (0.197) | (NA)
VI. RESULTS WHEN GENERALIZING ON FRESH SECTORS Precision 0.519 0.856 | 0.539 0
In this section, we examine the performance of the GBM (NA) (0.112) | (0.271) | (NA)
model when generalizing on fresh data taken from sectors tiable Ill: Model performance averaged ovérfolds, for

were not used when tuning the model. The model performansiementaryairspace sectors only, using the GBM method.
is assessed on several sub-populations of ATC sectors:
All ATC sectors (elementary, or not),

Elementary sectors,e. sectors that cannot be split intoC. Results for ATC sectors made of several airspace sectors

smaller sectors, and for which there is no occurence of o
the “high workload” clag3 Table[TV shows the results (correct classi cation rates and

Non-elementary sectorse. ATC sectors made of severalPrecision) obtained for the control sectors made of several
elementary airspace sectors, for which we detail tfdementary airspace sectors.
following results :

_ _ Overall Low Normal High
Overall performance on the non-elementary sectors Corect ciassit 1T 0757 0739 0728 03808

— Model performance on non-elementary sectors for (0.029) || (0.041) | (0.060) | (0.100)
which there is no instance of the “high workload” Precision 0.769 || 0.814 | 0.679 | 0.815

class in the data.

Table IV: Model performance averaged ovefolds, for ATC

A. Overall performance, all sectors included . .
sectors made of several elementary airspace sectors, using the
Table[Tl shows the performance of the GBM model, wheggn method.

including all sectors in the performance assessment. The rst

line shows the mean rates of correct classi cations, and the

standard deviations (within brackets). The overall rate of 12ble[V details the results for the non-elementary sectors

correct classi cation (2 line, 2@ column) is the accuracy, for which there is no occurence of the “high workload” class

and the class-speci ¢ rates' line, columns3,4, ands) are " the data, similar in that respect to the elementary sectors.
the recall. The precision of the model is given on the last

line, where the overall precision is the average over the three Overall || Low | Normal | High
| b 9 Correct classif.|| 0.738 0.713 0.760 NaN
classes. o (0.033) || (0.058) | (0.089) | (NA)
The mean values and standard deviations are computed Precision 0.504 0.784 | 0.729 | 0.000
from the 7 folds of the cross-validation, considering only the (0.020) || (0.087) | (0.056) | (0.000)
validation subsets; (not used to train the model). Table V: Model performance averaged ovérfolds, for
_ non-elementargectors having no data instances in the “high
Overall Low Normal High Kload” cat
Correct classif.|| 0.759 || 0.757 | 0.736 | 0.808 workioad™ category.
(0.03) || (0.046) | (0.074) | (0.100)
Precision 0.771 || 0.817 | 0.680 | 0.815 . .
(0.034) || (0.065) | (0.042) | (0.112) When comparing the results in tableq [V, V dnd Ill, we see

that the model performance drops for the elementary sectors,
with a recall barely abov&0 % for the “normal workload”
class, but that it remains good for non-elementary sectors in
general, and even those with no occurence of high workload.
This tends to show that our model over ts the data taken from
. elementary sectors speci cally, and generalizes poorly on these
Table [T shows the correct classi cation rates (overalg iors hut not on the others. One reason might be that there
accuracy, and class-speci ¢ recall), as well as the precisigps g other sectors in our data that would be similar to the
of the GBM model, for the control sectors made of only ongiementary sectors in size and characteristic, and that would
elementary airspace sector. Such sectors cannot be split SR&ge|l-palanced among the three classes. By contrast, we can
to alleviate the qurklf)ad. As a consequence, there is N0 dglg , |ot of data samples from well-balanced (non-elementary)
concerning the “high” workload for these sectors. sectors having sizes and characteristics similar to the non-
For these results, the models trained in each fold of thg,mentary sectors having no high workload occurence. This

cross-validation are exactly the same as in the previous SUbﬁﬂfght explain why our model still generalizes correctly on
tion. They are trained on the same training subsets as befQfR.sa sectors.

However, the model performance is here evaluated considerin
only the elementary sectors in the validation subsets.

Table II: Model performance averaged ovéffolds, for all
ATC sectors, using the GBM method.

B. Results for elementary sectors

%hisis a good result, as it means we can still use our work-
load model to nd optimal combinations of sectors, although

SWith the chosen target variable, high workload can be observed only whf Shou'q replace or amend our model when assessing the
the sector is split into several smaller sectors. workload in elementary sectors.
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show that high values afivg_vsare moreacceptable to the Concerning the relations betwen the input variables and the
controllers for small values afb than for high values, at leastworkload output, the bagplots of sectipn VIl con rm some
for this sector. A similar shape can be observed on mangtural intuitions on the sense of variations of these quantities
other sectors. So, within the normal workload category, ofor most variables, except maybe for one, the average absolute
intuition that the cognitive workload increases with the numbeertical speed of all aircraft in the sector. For all variables
of climbing/descending aircraft might actually be true. except this one, we observe on two instances of sectors (one
This relationship is simply dif cult to observe at the macro€n-route and one pre-approach sector) that when the input ATC
scopic level: the median values afg_vsare about the same complexity metric increases, we are more likely to be in a
whatever the workload category, which simply re ects the fadtigher workload category.
that there are no more climbing/descending aircraft, in our A natural intuition is that the cognitive workload of the
data, when the sector is split than when it is normally operatedntroller should also increase when there are more climbing
or collapsed. and descending aircraft in the sector, just as for the other vari-
In addition, the inuence ofavg_vsmust be considered ables. This relationship is most probably true, but it is dif cult
across all the sectors. When doing so, and when combiningdtobserve in our macroscopic workload categorization, except
with other variables such as the sector volume, the average veaybe by looking closely at the dispersion of the data in the
tical speedavg_vsdoes in uence the workload categorizationnormal workload category.
as was shown in previous work on the selection of relevantTo conclude, the model obtained with the GBM machine
explanatory variables[([13], 28], [15]). It remains to be seelearning method cannot be interpreted only as a model of
if, for our purpose, it could be replaced with a categoricdhe cognitive workload of the controller. The model expresses
variable characterizing the sector (en-route pog-approach, relations among variables emerging from the data, and it
for instance). can only be as good as the data that was used to train it.
It cannot be transposed to any context without precautions.
VIIl. CONCLUSION The fact that our workload model remains performant for
all non-elementary sectors conrms that it can actually be
Let us now conclude this paper by summarizing our agsed to predict optimal con gurations of ATC sectors (sector
proach and our ndings. We have looked into the performancgpening schemes), where we only search to split or merge
of a workload model learned from historical data, usingectors optimally. This model should be completed or replaced
gradient boosted trees. The examples used to learn the magiela more simple model when evaluating the workload in
were made of ATC complexity measurements computed froffementary sectors.
radar records and sector data, and workload measurementg future works, we might try to produce some arti cial
extracted from past ATC sector operations. The three levejgta samples of the “high” workload class for elementary
(low, normal, high) only give a rough indication of the worksectors. This would force our model to correctly assess the
load. However, this workload measurement has the advantaggindary between normal and high workload for these speci ¢
of being easily available, in large quantities and for a gregéctors. Another approach that we could try is to apply one-
number of ATC sectors, because it can be directly extractgfss classi cation methods on the “normal” workload class, to
from historical records of past sector operations. detect when non-normal instances (underloads, or overloads)
In previous works, this model showed &2%rate of correct occur in elementary sectors. Other work might consider the
classi cations, when training the model on one week of traf cseasonal variability in our data. It would be interesting to
and assessing it on another week, considering approximatefynpare the performances of a same model tuned several times
the same set of sectors in both the training and the test sgt.data samples of different months.
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