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Abstract—This paper describes a framework to automatically
identify air traffic flows from a set of trajectories by using
a clustering algorithm. The framework offers two methods to
cluster trajectories, each one using a different distance/similarity
measure between trajectories. Results and performance charac-
teristics of both methods are compared by applying them to real
trajectories over a French Area Control Center. The framework
can output statistics and figures for flow analysis and its use
is facilitated by the relatively low number of parameters to be
provided by the user. Its aim is to help support the SESAR vision
of flow-centric operations by being integrated into Air Traffic
Management tools, e.g. for airspace design/management or for
analysis of traffic patterns in a free route environment.

I. INTRODUCTION

In Air Traffic Management (ATM), massive amounts of
data are available to feed data-driven models for real-time
decision support or to identify behaviours or patterns relevant
to the operational performance of the system in post-event
analysis. In particular, sources such as radars, Automatic
Dependent Surveillance-Broadcast (ADS-B) or trajectory pre-
diction models generate samples of data points representing
trajectories that can then be clustered to identify traffic flows.
Trajectory clustering algorithms could be useful in the context
of the flow-centric operations vision of SESAR, as described
in the European ATM Master Plan [1], by being integrated
into tools supporting airspace design/management, complexity
management, etc. This is particularly true in a free route
environment, where the capacity to understand traffic flows is
even more necessary as fixed routes will no longer structure
the traffic.

Clustering is a widely used data analysis technique in the
statistics/machine learning field. It is about grouping entities
with similar characteristics together, so the notion of similar-
ity/distance is essential to the problem. A number of clustering
algorithms have been reported in the literature, such as k-
means [2], BIRCH [3], DBSCAN [4] and OPTICS [5], all
of which are oriented towards the clustering of point data.
Even though trajectories have a functional nature (curves),
these algorithms can still be applied since trajectory data is
available in the form of samples of data points.

For instance, in a recent paper [6], DBSCAN shows promis-
ing results when applied to the characterisation of traffic flows
based on recorded radar tracks in the terminal airspace of the

New York Metro region. This algorithm has the capability to
handle noise/outlier data and does not require the number of
clusters to be provided as an input parameter. Previously, in
[7], another framework is described based on DBSCAN and
k-means to analyse the patterns of traffic over the Northern
California terminal area. In both of these studies, however, no
distance/similarity measures between trajectories is provided,
i.e. the clustering is based solely on the density of the
individual trajectory points.

Alternatively, in [8] and [9], two different methods are
presented to cluster trajectory segments rather than trajectory
points. The former (TRACLUS) implements a variant of DB-
SCAN to cluster the segments but has never been successfully
applied to air traffic as far as we know. The latter is designed
to identify air traffic flows in the National Airspace System
(NAS), but it is limited to 2D and based on the development
of specific algorithms for incremental clustering requiring a
non-obvious parameter setting by the user.

Another interesting study that examines the problem of
clustering air traffic trajectories is reported in [10] where a
spectral clustering approach is used to consider the temporal
characteristics of the air traffic flows in the US. However, the
procedure to take into account the shape of the trajectories is
not evident and the curvature of the clustering centroids might
not always be very realistic from an operational point of view.
Other approaches such as in [11] relies on a graph structure
like a road network, which is not adapted to ATM because of
the direct routes often allocated by ATC for tactical reasons
or when applied to a free route environment.

More recently, in order to overcome the limitations of
some of these techniques, an approach based on entropy
minimisation and Lie group modelling has been proposed in
[12]. Unfortunately, only partial results are available at the
moment of writing this paper and the implementation of the
algorithms is fairly complex.

In this paper, we propose a new framework for air traffic
flow analysis based on an improved version of DBSCAN
called Hierarchical Density-Based Spatial Clustering of Appli-
cations with Noise (HDBSCAN) [13] which is able to manage
clusters of different densities with a single input parameter.
Two methods based on two different distance functions be-
tween trajectories, Euclidean Distance (ED) and Symmetrized
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Segment-Path Distance (SSPD) [14] can be selected by the
user. These distances offer a trade-off between accuracy and
runtime. In addition to the clustering capability, the frame-
work provides several components to filter and interpolate
trajectories, compute basic flow statistics and export clusters
in Keyhole Markup Language (KML). The framework can be
useful to analyse traffic patterns in a wide range of operational
scenarios both in en-route and approach. In addition, its imple-
mentation and integration into ATM applications is facilitated
by the public availability in several languages of some of the
algorithms like HDBSCAN [15].

This paper is organised as follows. Section II details the
methodology and the different components of the framework.
Section III presents the results and the comparison of the
two methods by using DDR2 [16] trajectory data provided
by Eurocontrol over the Reims Area Control Center (ACC).
Finally, section IV summarizes and identifies some ideas for
future work and potential applications.

II. THE FRAMEWORK

The framework is designed to satisfy the following require-
ments:

1) It shall be possible to filter trajectories geographically,
by airspace, by altitude and in time.

2) It shall be possible to cluster in 2 or 3 dimensions,
optionally taking the heading into account as well.

3) The clustering algorithm shall allow for variable trade-
off between computing time and quality of the resulting
clusters so as to be useful in scenarios with either large
or small sets of trajectories.

4) The clustering algorithm shall work within an area
where traffic density distribution is not uniform.

5) The clustering algorithm shall work with noise data and
be able to identify outliers.

6) The clustering algorithm should require a reduced num-
ber of input parameters with clear ATM operational
significance.

7) For each cluster it shall be possible to compute the
centroid in addition to the set of associated trajectories.

8) For each cluster it shall be possible to compute statis-
tics such as the flow rate, flight distribution per ori-
gin/destination, average distance and heading of the
cluster trajectories.

Figure 1 shows the framework architecture with the two
clustering methods in the center and the pre-processing and
post-processing steps. The user can choose the method and
the associated parameters. The clustering method based on
ED works faster than SSPD at the possible expense of a lower
quality clustering result. The specific steps of the framework
depend on the selected distance and are described in the
following sub-sections.

The framework is implemented in Python 3 with the follow-
ing Python libraries: scikit-learn 0.18.2, RDP 0.8, Hdbscan
0.8.8, Pyproj 1.9.5.1, Planar 0.4. The HDBSCAN library is
highly optimised, but otherwise no parallelism, multi-threading
or code optimisation has been used so far in areas such the

SSPD implementation where considerable gains of perfor-
mance can be expected.

Figure 1. Trajectory Clustering Framework process for both the ED and
SSPD-based distance methods. The framework automatically identifies the
flows from a set of trajectories by applying the HDBSCAN clustering
algorithm and generates statistics for flow analysis.

A. Preprocessing
Trajectory datasets contain 3D position samples (latitude,

longitude, altitude) for each trajectory and possibly other
information like speed and heading. Latitude/longitude coordi-
nates are projected in order to facilitate distance computation.
Speed is not used by the clustering algorithms and heading
is optional in the ED-based clustering method to ensure flows
in opposite directions are separated into different clusters. If
heading information h is required but not part of the dataset, it
is calculated for each trajectory segment from geographic co-
ordinates [(lat1, lon1), (lat2, lon2)] and ∆lon = lon2− lon1
by:

h = (arctan(a) + 360) % 360 (1)
where

a =
cos(lat2) sin(∆lon)

cos(lat1) sin(lat2) − sin(lat1) cos(lat2) cos(∆lon)

It is important to note that position samples can be irregu-
larly distributed along the trajectory as shown in Figure 2.
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Figure 2. Trajectory discretisation example

Figure 3. Comparison of interpolation methods

Many data points can be removed as they are redundant,
whereas other positions need to be interpolated.

We use the Ramer-Douglas-Peucker (RDP) [17] [18] algo-
rithm to remove redundant trajectory information, but only in
the case of SSPD where considerable runtime gains can be
expected. Further details on the application of this algorithm
are given in section II-B2.

Regarding the interpolation method, there are several meth-
ods available from simple linear interpolation to more sophisti-
cated polynomial or spline interpolation. In the framework, the
Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
[19] [20] method is used as it better takes into account the
operational reality of air traffic trajectories. As shown in the
example of the vertical profile of a flight in Figure 3, linear
interpolation is too abrupt, whereas the order 3 spline ensures
the continuity but with oscillations (overshoot). With PCHIP,
however, we get a smoother curve much more representative
of a true flight trajectory.

Finally, as for the filtering capability, in addition to a an
altitude range or a time window, the framework allows the
user to chose either a bounding box around the geographic
area to be studied or a set of airspaces (e.g. ACC or sector).
In the latter case, the convex hull is computed for the set of
airspaces.

B. Clustering

Once the preprocessing phase is complete and trajectories
have been properly prepared, we can apply the HDBSCAN

algorithm to them to identify the traffic flows. Compared to
DBSCAN, HDBSCAN presents several improvements. First,
it only requires the user to define the minimum cluster size,
i.e. the minimum number of points (trajectories in our case)
to form a cluster. Secondly, HDBSCAN works better than
DBSCAN for data with varying density, which is usually the
case for air traffic trajectories. Thirdly, HDBSCAN prevents
the ”bridge effect” between two clusters because of a single or
a few data points in the middle of the two clusters (potentially
gluing them together) by considering these points as noise.

The choice of an appropriate distance/similarity measure
between trajectories is as important as the choice of the clus-
tering algorithm. There are quite a few functions to compute
trajectory distances reported in the literature, each one offering
a different trade-off between computation time, accuracy and
sensitivity to noise data, from the simple ED to the more
sophisticated and complex ones like Fréchet and Hausdorff.
As our framework is to be used in a wide range of use case
scenarios, it cannot be based on a single metric. Also, we
need a similarity measure that accounts for both the physical
distance and the global shape between trajectories, i.e. time or
other trajectory characteristics will not be considered.

We decided to choose the ED function since it is computa-
tionally fast and so potentially useful for scenarios involving
a large number of trajectories, such as the ones covering wide
geographic areas or large time windows. For scenarios where
accuracy is more important and execution time less of an issue,
SSPD distance should be used instead.

HDBSCAN labels each trajectory with a cluster number
(outliers are labelled with a −1) and measures the strength of
the cluster membership for each trajectory in the cluster with
a probability. In this framework, a cluster is defined by three
attributes: a cluster number, the list of trajectories belonging to
this cluster (with probability equal to 1), and a representative
trajectory or centroid (this last attribute is computed after the
execution of HDBSCAN).

In the following subsections, the specificities of the appli-
cation of HDBSCAN with each distance are detailed.

1) ED-based Clustering: The first step in this method is to
build a matrix where each row represents a whole trajectory
built from the sequence of trajectory points. This requires all
the trajectories to have exactly the same number of points,
which is indeed the case as we interpolate the trajectories
according to the number of points chosen by the user. This is
done at least once in the pre-processing phase before filtering,
and again if the trajectories are clipped as a result of a filter
being applied.

For instance, in the case of a 3D clustering with heading,
N trajectories and n points per trajectory, the matrix would
be defined as: x11y11z11h11x12 . . . x1ny1nz1nh1nx1n

...
. . .

...
xN1yN1zN1hN1xN2 . . . xNnyNnzNnhNnxNn

 (2)

where xijyij is the projected position, zij the altitude (in
meters) and hij the heading computed as in (1). In order for
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these elements to have the same weight, we standardise each
value in the matrix by subtracting the mean and dividing by
the variance.

Once these steps are concluded, we can apply the HDB-
SCAN algorithm with the following two parameters: the
minimum number of trajectories per cluster (user parameter)
and the clustering matrix built as in (2). ED is computed from
the clustering matrix by the HDBSCAN itself as it is part of
the standard distances already implemented in the algorithm.

The last step is to calculate the centroid of each cluster as
the mean of the trajectories of the cluster.

2) SSPD-based Clustering: From a mathematical point of
view, SSPD should be considered as a similarity measure
rather than a distance or metric, because although it is symmet-
ric, the triangle inequality property is not satisfied. Compared
to the Fréchet distance, SSPD does not consider the speed
of the trajectory since it is purely geometrical. On the other
hand, if two trajectories are similar during the en-route phase
because they share the same air routes and diverge only in the
final phase of the flight at the terminal area, distance would be
over-estimated by both Hausdorff and Fréchet. This is not the
case with SSPD, because it better takes into account the global
difference in the shape of both trajectories. Also, it presents a
good trade-off between the simpler and faster ED and the more
complex and time-consuming Hausdorff and Fréchet distances.
However, with the SSPD distance it may be difficult to separate
trajectories that are geographically close, similar in shape and
length but having opposite directions. This may be less of an
issue when the clustering is performed in 3D, as air routes for
instance are designed to vertically separate flows in opposite
directions.

After the pre-processing phase where trajectories are pro-
jected, interpolated and finally filtered for the area of interest,
there is no need to interpolate the filtered trajectories as
opposed to in the ED case. This is because SSPD does not
require the trajectories to have the same number of points.
However, the SSPD distance being much slower to compute
than the ED, the RDP algorithm is applied first to remove
redundant trajectory points.

The RDP algorithm can be particularly effective when
applied to the en-route phase of the trajectory where aircraft
follow long great circle segments linking the flight plan
waypoints. Nevertheless, even during the cruise phase, aircraft
do turn to follow jet routes and take advantage of favourable
winds, avoid hotspot areas, etc. Therefore, we need to use
this algorithm carefully enough so as not to exclude too many
(if any) turning points. RDP accepts a threshold parameter
allowing for the simplification, to a greater or lesser degree,
of the trajectory, which can be specified by the user as a
framework parameter. With a threshold of 200 meters we
notice already an important reduction of redundant points for
some trajectories like in Figure 4.

Once RDP has been applied to the trajectories and the
distance matrix is computed, we can run HDBSCAN to
perform the clustering. Afterwards, we finally obtain the
cluster centroids by choosing the trajectory in the cluster that

Figure 4. Application of Ramer-Douglas-Peucker (RDP) algorithm example:
points reduced from 100 to 15.

minimises the distance with the other trajectories in the cluster.
Therefore, with this method, centroids are true trajectories and
not virtual trajectories like with ED.

C. Post-processing

The objective of this phase is to generate from the clustering
results all the necessary outputs to enable the user to analyse
the structure of the traffic represented by the clusters. In
particular, the framework can generate:

1) 3D and 2D plots of the centroids indicating visually the
flow intensity and direction.

2) Histograms to show the distribution of trajectories per
cluster.

3) A set of statistics per cluster:
• average length/altitude/heading,
• flow rate,
• flight distribution per origin/destination pair, origin

and destination.
4) A KML file to display in detail the clusters as well as

other related ATM structures such as the airspaces and
the air routes.

III. RESULTS

We assess the performance of both clustering methods by
applying them to one day of traffic (26 June 2015) over the
Reims ACC area. The dataset provided by Eurocontrol in
DDR2 format contains 9442 trajectories. A bounding box with
coordinates [(46.7◦, 1.328889◦), (51.116667◦, 8.218611◦)] is
defined around the Reims area to filter the trajectories geo-
graphically and different evaluations are performed on several
altitude intervals. The coordinates are projected with Lambert-
93 which is the official projection in Metropolitan France.

The objective is to identify the flows over Reims ACC and
for that we need to specify the minimum number of trajectories
(minimum cluster size) for a flow to be considered as such.
This is the main clustering parameter to be defined by the user,
and its value is highly application-dependent. Our purpose
being purely the assessment of the algorithms, we set it up
so that major flows can be identified.

The computer used in the evaluations is an Intel R©Xeon
Quad-Core 2.80GHz processor with 6GB of memory.
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TABLE I
EXPERIMENTAL SETTINGS

ED SSPD ED vs SSPD

Dimension 3 3 2
Min. Alt (ft) None 31500 30000
Max. Alt (ft) None 34500 50000
Interpolation Points 100 100 100
Min. Length (NM) 20 20 20
Min. Cluster Size 50 10 50

A. ED-based clustering results

This first experiment covers the complete volume of traffic
in Reims ACC and is performed with the parameters specified
in the first column of Table I.

We want to identify flows of at least 50 trajectories. Even
though increasing the number of points after interpolation may
improve the clustering accuracy, we have found 100 points to
be a reasonable value. We also filter out any trajectory shorter
than 20 NM, which reduces the number of trajectories to 9307.

PCHIP interpolation has the longest computation time,
taking 99 seconds against 36 seconds for HDBSCAN. In total,
outputs are generated in about 3 minutes, which is acceptable
for a scenario with more than 9000 trajectories.

Figure 5 shows the 2D and 3D views of the 38 cluster
centroids, where the thickness of the centroid lines is propor-
tional to the intensity of the flow as indicated in the flight
distribution per cluster figure. The algorithm has identified
both en-route and terminal flows, the latter ones mainly around
Paris Charles-de-Gaulle or Paris-Orly (Paris coordinates are
49◦, 2.3◦) terminal area. We can use the KML output in
Figure 6 to better visualise the centroids for the flows departing
from and approaching Paris.

The number of outliers (32%) is high, but it depends on the
size of the cluster (in our case 50) as shown in Figure 7.
Also, it can be explained by the fact that the chosen day
was the one with the largest volume of traffic for 2015 in
Reims. This particularly high traffic density may have induced
a higher complexity and required exceptional measures to
resolve conflicts or hotspots.

B. SSPD-based clustering results

In this case, we use the SSPD-based clustering method to
analyse the flows in the LFEEXR sector, with the parameters
in the second column of Table I.

After filtering out the flights not entering this sector, a total
number of 349 trajectories remain. The RDP algorithm, with a
threshold of 200 meters, is next applied to remove redundant
trajectory points. Then the SSPD distance is calculated, taking
44 seconds. Adding the 98 seconds of interpolation time for
the initial set of 9442 trajectories, the total computation time
is approx. 2 minutes and 30 seconds, which is relatively high
compared with the 3 minutes for the over 9000 trajectories of
the first experiment.

Five clusters are identified with 25% of outliers. We can
see the five centroids and the number of flights per cluster in
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Figure 5. ED-based clustering results
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Figure 6. ED-based clustering - Centroids for Paris flows

Figure 7. Influence of the cluster size on the number of clusters and
percentage of outliers

Figure 8. It has to be noted that with SSPD a cluster can have
trajectories with opposite directions because of the already-
mentioned limitation of this distance and the fact that the clus-
tering is performed in 2D. Therefore, the direction displayed
for the cluster centroids may be the opposite direction of some
of the trajectories in the cluster.

In Figure 9, we superimpose the identified clusters centroids
in red over the air routes in green to make sure that both
are consistent in terms at least of geographical location. For
instance, cluster number 2 is a northwards flow located in the
east of Paris matching perfectly with air route UM733.
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Figure 8. SSPD-based clustering results for LFEEXR sector

Figure 9. Matching cluster centroids (in red) and routes (in green and blue)
in LFEEXR sector

TABLE II
ED VS SSPD RESULTS

ED SSPD

Number of trajectories after filtering 6133 6133
RDP threshold None 300
Number of clusters 29 20
Noise/Outliers (%) 34 43
Execution time (sec) 306 89463

C. ED versus SSPD comparison

The last experiment consists of comparing both clustering
methods by applying them to the same use case. The goal is
to identify the major flows in 2D (minimum of 50 flights per
day) in Reims ACC between FL300 and FL500. Clustering
is performed in 2D because it is more convenient for visual
verification, as controllers are used to a 2D view of the traffic.
Parameters are shown in the third column of Table I and the
results in Table II.

There is a significant difference in time performance be-
tween the two methods, with ED-based clustering being almost
300 times faster than SSPD-based clustering (about 5 minutes
versus more than 24 hours). Additionally, ED-based clustering
produces about 10% less outliers, which can be explained by
the fact that SSPD better takes into account the differences in
shape and physical distance between trajectories.

As for the quality of the clustering, ED performs worse in
some cases like in cluster number 8 (see Figure 10). Even
if the trajectories in this cluster are all southbound, it would
be more appropriate to separate them into different clusters to
better account for the diversity of headings. However, the ED
distance is not sensitive enough to operate this separation and
the only alternative would have been to decrease the minimum
number of trajectories per cluster, which would result in an
even a greater number of clusters. With SSPD, we obtain fewer
and more homogeneous clusters, but the number of outliers (43
%) is considerable.

In order to further analyse the identified clusters, Table III
gives the statistics for two of the flows identified by the
SSPD method. Thus, 5% of the flights in cluster 7 follow the
Paris Charles-de-Gaulle (LFPG) - Heathrow airport (EGLL)
route, whereas 39% of the flights in cluster 8 follow the Nice
(LFMN) - Paris Orly (LFPO) route.

 
Seventh SESAR Innovation Days, 28th – 30th November 2017 

 

 

 
 

 

 

6



Figure 10. Cluster number 8 generated by the ED-based method

TABLE III
SSPD CLUSTERING STATISTICS EXAMPLE

Cluster 7 8

Avg. Heading (◦) 325 336
Avg. Alt (ft) 36199 32753
Avg. Length (NM) 255 75
Flights/hour 14.7 2.5

Main orig/dest LFPG-EGLL LFMN-LFPO
5% (17) 39% (24)

Main origin LFPG LFMN
16% (56) 43% (26)

Main destination EGKK LFPO
17% (59) 89% (54)

Main A/C type A319 A320
22% (76) 62% (38)

It may not at first be evident as to why cluster 8 overlaps
cluster 7, rather than being merged into one single cluster.
In fact both clusters contain a majority of northbound flights
from south-east France and Italy. However, most of the flights
in cluster 8 are for Paris (89% LFPO), whereas in cluster 7 the
main destination is London-Gatwick (17% EGKK), therefore
there are two distinct routes that are represented by these two
clusters.

Figure 11 displays the centroids and their intensities (num-
ber of trajectories) to compare the results of both methods.
It is not difficult to match the major flows, e.g. ED flows 3
(green), 10 (pale yellow), 1 (blue) correspond to SSPD flows
4 (salmon), 7 (orange), 5 (red). However, except for cases
like the anomalous cluster ED 8 and the corresponding SSPD
14, SSPD clusters have a higher number of trajectories as
this distance is unable to discriminate similar trajectories with
opposite directions. For instance, we can observe that clusters
17 (red), 23 (brown), 25 (blue) identified by the ED method
have been replaced by the single and bigger SSPD cluster 19
(dark orange).

D. Verification with planned trajectories

All of the previous experiments are based on the executed
trajectories only (M3 in DDR2). However, the difference
between the planned and executed traffic may be significant
for days with an important volume of traffic as in our case,
so it may be interesting to check how well the clustering
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Figure 11. ED versus SSPD clustering results

Figure 12. Clusters 4 and 20 generated with ED-based clustering

generated from the planned trajectories (M1 in DDR2) match
the ATS Route Network (ARN). With the executed traffic, we
have already seen that some of the clusters correspond to air
routes in a previous experiment (see Figure 9). In the case of
the planned trajectories, which are based on ARN and have
not been modified by ATC in the tactical phase, the matching
should be even more evident if our clusters are consistent with
the operational reality.

We use the same parameters as those for ED (first column
in Table I), i.e. with a minimum number of trajectories equal
to 50. Even with the ED method, some of the obtained clusters
are quite accurate e.g. clusters 4 and 20 in Figure 12.

These two clusters have 74 and 84 trajectories respectively.
In each cluster, all trajectories are almost completely overlap-
ping since no deviations from the flight plans were introduced
by ATC. In Figure 13 it can be observed that sections of the
published air routes UM133 and UM728 over Reims ACC (in
green) match perfectly with the two clusters (in black). More
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Figure 13. Comparison between routes UM133 and UM728 (in green) and
clusters 4 and 20 generated by the ED-based method (in black)

generally, most of the clusters correspond to sections or links
between sections of air routes. It is also interesting to note
that even though the two routes are geographically close, the
clustering is accurate enough to properly identify two separate
flows.

IV. CONCLUSION

In this article, we have presented two methods based on the
HDBSCAN clustering algorithm to identify air traffic flows
from a set of trajectories. The choice of the method to use
depends on the volume of trajectories to be processed and the
desired accuracy. For a precise clustering, over a limited area,
such a sector or small family of sectors, SSPD-based clustering
is the best-adapted, except if we want to make sure that
similar 2D flows in opposite directions are properly separated.
Otherwise, ED-based clustering is probably the best option as
SSPD may be prohibitively slow for some applications unless
parallel computing for SSPD is implemented.

Our results have shown that we can match the obtained
clusters to existing operational air routes. For the planned
trajectories, clusters fit the route structure over Reims as
expected, which reinforces our confidence in the framework
results. On the other hand, outliers are in general quite high
and further analysis is needed to characterise them. The
best way to validate the framework would be to use it in
a real application and have the operational experts (Flow
Management Position or controllers) check that the identified
flows make sense.

In particular, we are considering using the framework within
the scope of the SESAR PJ08 project (Advanced Airspace
Management) [21], where sector configurations could be op-
timised by minimizing flow cuts. In addition, we need to add
further analytic capabilities in order to better understand the
contribution of each flow, as well as that of the outliers, to the
traffic complexity in a sector.

We would like to extend the framework by adding other
clustering algorithms. A segment approach such as the one in
TRACLUS seems particularly promising, where a trajectory
could potentially be associated not only to a single cluster,
but to a sequence of clusters, to better explain the different
flight phases. Thus, in the en-route phase, the trajectories

sharing the same air routes could have their en-route segments
clustered, independently of whether or not they share the same
departure/arrival procedures.
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