A case study : Influence of Dimension Reduction on regression trees-based Algorithms -Predicting Aeronautics Loads of a Derivative Aircraft

Abstract : In aircraft industry, market needs evolve quickly in a high competitiveness context. This requires adapting a given aircraft model in minimum time considering for example an increase of range or the number of passengers (cf A330 NEO family). The computation of loads and stress to resize the airframe is on the critical path of this aircraft variant definition: this is a consuming and costly process, one of the reason being the high dimen-sionality and the large amount of data. This is why Airbus has invested since a couple of years in Big Data approaches (statistic methods up to machine learning) to improve the speed, the data value extraction and the responsiveness of this process. This paper presents recent advances in this work made in cooperation between Airbus, ENAC and Institut de Mathé-matiques de Toulouse in the framework of a proof of value sprint project. It compares the influence of three dimensional reduction techniques (PCA, polynomial fitting, combined) on the extrapolation capabilities of Regression Trees based algorithms for loads prediction. It shows that AdaBoost with Random Forest offers promising results in average in terms of accuracy and computational time to estimate loads on which a PCA is applied only on the outputs.
Type de document :
Article dans une revue
Journal de la Société Française de Statistique, Société Française de Statistique et Société Mathématique de France, In press
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01700314
Contributeur : Edouard Fournier <>
Soumis le : jeudi 15 novembre 2018 - 09:48:00
Dernière modification le : samedi 17 novembre 2018 - 01:18:47

Fichiers

Sprint.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01700314, version 2
  • ARXIV : 1812.02310

Citation

Edouard Fournier, Stéphane Grihon, Thierry Klein. A case study : Influence of Dimension Reduction on regression trees-based Algorithms -Predicting Aeronautics Loads of a Derivative Aircraft. Journal de la Société Française de Statistique, Société Française de Statistique et Société Mathématique de France, In press. 〈hal-01700314v2〉

Partager

Métriques

Consultations de la notice

31

Téléchargements de fichiers

21