J. Ramsay and B. Silverman, Functional Data Analysis, ser, 2005.

C. Bouveyron and J. Jacques, Model-based clustering of time series in group-specific functional subspaces Advances in Data Analysis and Classification, pp.281-300, 2011.

F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis: Theory and Practice, ser, 2006.

A. Delaigle and P. Hall, Defining probability density for a distribution of random functions, The Annals of Statistics, vol.38, issue.2, pp.1171-1193, 2010.
DOI : 10.1214/09-AOS741

URL : http://doi.org/10.1214/09-aos741

M. Boullé, R. Guigourès, and F. Rossi, Advances in Knowledge Discovery and Management, Nonparametric Hierarchical Clustering of Functional Data, pp.15-35, 2014.

D. Mumford and C. De-giorgi, Pisa: Scuola Normale Superiore, 2012, ch. The geometry and curvature of shape spaces, pp.43-53, 2009.

L. Sangalli, P. Secchi, S. Vantini, and V. Vitelli, Functional clustering and alignment methods with applications, Communications in Applied and Industrial Mathematics, vol.1, issue.1, pp.205-224, 2010.

I. Dryden and K. Mardia, Statistical Shape Analysis, ser, 1998.

F. Flaherty and M. Do-carmo, Riemannian Geometry, ser Mathematics: Theory & Applications, 2013.

P. W. Michor and D. Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms, Documenta Mathematica, vol.10, pp.217-245, 2005.

O. Kowalski and M. Sekizawa, Natural transformations of riemanian metrics on manifolds to metrics on tangent bundles, Bull. Tokyo Gagukei University, vol.40, issue.4, pp.1-29, 1988.

V. L. Popov, Contact Mechanics and Friction: Physical Principles and Applications Coulomb's Law of Friction, pp.133-154

R. Rajamani, Vehicle Dynamics and Control, ser. Mechanical Engineering Series, 2011.