A New Representation of Air Traffic Data Adapted to Complexity Assessment

Abstract : Air traffic is generally characterized by simple indicators like the number of aircraft flying over a given area or the total distance flown during a time window. As an example, these values may be used for estimating a rough number of air traffic controllers needed in a given control center or for performing economic studies. However, this approach is not adapted to more complex situations such as those encountered in airspace comparison or air traffic controllers training. An innovative representation of the traffic data, relying on a sound theoretical framework, is introduced in this work. It will pave the way to a number of tools dedicated to traffic analysis. Based on an extraction of local covariance, a grid with values in the space of symmetric positive definite matrices is obtained. It can serve as a basis of comparison or be subject to filtering and selection to obtain a digest of a traffic situation suitable for efficient complexity assessment.
Type de document :
Communication dans un congrès
ALLDATA 2018, The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data, Apr 2018, Athenes, Greece. pp. 28-33/ISBN: 978-1-61208-631-6, 2018, ALLDATA 2018 Proceedings
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-01799373
Contributeur : Florence Nicol <>
Soumis le : jeudi 24 mai 2018 - 16:16:38
Dernière modification le : mercredi 18 juillet 2018 - 18:28:01
Document(s) archivé(s) le : samedi 25 août 2018 - 14:19:46

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01799373, version 1

Collections

Citation

Georges Mykoniatis, Florence Nicol, Stéphane Puechmorel. A New Representation of Air Traffic Data Adapted to Complexity Assessment. ALLDATA 2018, The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data, Apr 2018, Athenes, Greece. pp. 28-33/ISBN: 978-1-61208-631-6, 2018, ALLDATA 2018 Proceedings. 〈hal-01799373〉

Partager

Métriques

Consultations de la notice

79

Téléchargements de fichiers

32