Optimal Riemannian quantization with an application to air traffic analysis

Abstract : The goal of optimal quantization is to find the best approximation of a probability distribution by a discrete measure with finite support. When dealing with empirical distributions, this boils down to finding the best summary of the data by a smaller number of points, and automatically yields a K-means-type clustering. In this paper, we introduce Competitive Learning Riemannian Quantization (CLRQ), an online algorithm that computes the optimal summary when the data does not belong to a vector space, but rather a Riemannian manifold. We prove its convergence and show simulated examples on the sphere and the hyperbolic plane. We also provide an application to real data by using CLRQ to create summaries of images of covariance matrices estimated from air traffic images. These summaries are representative of the air traffic complexity and yield clusterings of the airspaces into zones that are homogeneous with respect to that criterion. They can then be compared using discrete optimal transport and be further used as inputs of a machine learning algorithm or as indexes in a traffic database.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

Contributeur : Alice Le Brigant <>
Soumis le : dimanche 1 juillet 2018 - 11:45:25
Dernière modification le : mardi 3 juillet 2018 - 01:02:56
Document(s) archivé(s) le : lundi 1 octobre 2018 - 06:36:08


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01816865, version 2
  • ARXIV : 1806.07605



Alice Le Brigant, Stéphane Puechmorel. Optimal Riemannian quantization with an application to air traffic analysis. 2018. 〈hal-01816865v2〉



Consultations de la notice


Téléchargements de fichiers