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Abstract  
 
In the present paper, we propose a new approach for scheduling ground-handling vehicles, 
tackling the problem with a global perspective. Preparing an aircraft for its next flight requires a 
set of interrelated services involving different types of vehicles. Planning decisions concerning 
each resource affect the scheduling of the other activities and the performance of the other 
resources. Considering the different operations and vehicles instead of scheduling each resource 
in isolation allows integrating decisions and contributing to the optimization of the overall 
ground-handling process. This goal is defined through two objectives: (i) minimizing the 
waiting time before an operation starts and the total reduction of corresponding time windows 
and (ii) minimizing the total completion time of the turnarounds. We combine different 
technologies and techniques to solve the problem efficiently. A new method to address this bi-
objective optimization problem is also proposed. The approach has been tested using real data 
from two Spanish airports, thereby obtaining different solutions that represent a trade-off 
between both objectives. Experimental results permit inferring interesting criteria on how to 
optimize each resource, considering the effect on other operations. This outcome leads to more 
robust global solutions and to savings in resources utilization. 
 
Keywords:  
Air transportation, ground handling, multi-objective optimization, constraint programming, 
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1. Introduction 
 
The notable growth of air traffic in recent years has led to increasingly congested airports and 
significant flights delays. In 2012, approximately 35% of European flights were more than 5 
minutes late, with an average of 30 minutes [1]. A more collaborative coordination among all 
the involved actors, such as airports, airlines, air traffic management, ground handlers, etc., and 
a better planning of airport resources are crucial to improve the operational efficiency of the air 
transportation system. Different efforts and important projects are currently being carried out to 
achieve this goal, such as the Airport-Collaborative Decision Making (A-CDM) and the Single 
European Sky ATM Research (SESAR) programs [2,3], which is particularly focused on Air 
Traffic Management.  
 
Regarding turnaround, the TITAN Project [4] proposes to improve the efficiency of airport 
processes through sharing reliable and timely information among the concerned 

*Manuscript
Click here to view linked References



2 
 

actors. Turnaround is defined as the period of time the aircraft is on the ramp between an 
inbound and outbound flight, and different ground-handling operations are performed. Ground 
handling comprises the activities, operations procedures, equipment requirements, and 
personnel necessary to prepare an aircraft for the next flight. Many aircraft delays can be 
attributed to overlong turnarounds due to a lack of planning integration of the different activities 
and an inefficient use of resources [5]. In addition, the ground tasks are very interdependent. 
Each operation is a potential source of delays that could be easily propagated to other ground 
operations and other airport processes [6,7].  
 
Divisions of either airports or airlines have historically performed these operations. With the 
recent process of deregulation of the ground-handling market at European airports, a notable 
increase in the number of third-party companies has taken place [8]. This new scenario, with 
several ground handlers providing multiple services, further increases the importance of 
efficient scheduling of ground activities [9]. Due to the hierarchy of overall airport planning, 
ground handlers are generally not included in the decision making of other scheduling processes 
(flight scheduling, stand allocation, etc.). This means they must fit their planning around a set of 
hard constraints. These constraints include aircraft arrival, departure, turnaround time, and stand 
allocation, among others [10]. 
 
Thus, ground handling appears an interesting and open field for research and technology 
transfer. In particular, logistics in ground handling [11] and cooperative planning decisions are 
among the major challenges to improving the quality of ground-handling services. In this 
context, the development of new tools that can help with the decision making process becomes 
mandatory. We present a novel and efficient bi-objective approach to tackling the ground-
handling scheduling problem. To the best of our knowledge, this is the first time the problem is 
treated as a whole in the literature. Thus far, other approaches have been developed to optimize 
operations in isolation [9,12,13], but they do not consider the relationships and entanglements 
among all the involved activities. In our approach, we do explicitly consider such relationships 
and entanglements to solve the problem from a global perspective. To do so, we develop a bi-
objective optimization methodology and decompose the problem to apply efficient techniques. 
Thus, we first solve a planning problem that leads to multiple Vehicle Routing Problem with 
Time Windows (VRPTW) problems. These are solved individually, and decisions made on the 
routing are propagated to the other VRPTWs through reductions in the available time windows. 
This process provides a consistent method to solve the complete problem. 
 
Ground-handling procedures are usually divided into two types: terminal and ramp. Terminal 
activities are performed inside the terminal buildings and concern passenger services. Ramp 
operations take place at the aircraft parking position between the time it arrives at the stand (In-
Blocks) and its departure (Off-Blocks). Figure 1 shows an example of the principal activities 
during a typical turnaround when the aircraft is parked at a contact point (the stand is connected 
to the terminal via a bridge).  
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Figure 1. Example of activity flow during a turnaround at a contact point 

Because the turnaround is a very complex process, its duration depends on many different 
variables. These include operational variables related to the aircraft type (size, number of seats), 
the number of tasks, parking position at a contact or remote stand, and the service time required 
to carry them out (full servicing or minimum servicing). Some activities are affected by 
precedence constraints imposed due to security issues, space requirements or airline policy; e.g., 
fueling cannot be performed simultaneously with deboarding/boarding. In some cases, the 
precedence constraints can be violated; e.g., fueling and deboarding can be performed 
simultaneously when a fire extinguisher is available. For hygienic reasons, the toilet and potable 
water servicing (collect the waste and re-equip with fresh water) cannot be performed at the 
same time, but either of the two can be performed first. The catering and cleaning processes 
usually must be finished before boarding starts and, sometimes, they can begin only when 
deboarding ends. The end of the turnaround process is determined by the Off-Block Time 
(OBT), when all doors are closed, the bridge is removed, the pushback vehicle is present and the 
aircraft is ready for startup and push back [6]. Although this operation might not be necessary 
for aircraft parked at a remote position, pushing away the aircraft (pushback) is the most typical 
method used for leaving the parking position. For that reason, we have defined pushback as the 
last task of the ground-handling service in our problem.  
 
Each operation is performed by a specific type of vehicle; therefore, different ground units or 
vehicles are necessary. According to the task, some vehicles with a given capacity must 
transport some quantity of resources to the aircraft stand (catering, fueling, or potable water 
operations) or collect waste from the aircraft (also catering, lavatory services or cleaning tasks). 
Likewise, some vehicles do not transport any resource (pushback, baggage loader or the fuel 
dispenser by underground pipelines). To simplify the model according to the goal of this work, 
we made some assumptions about the turnaround operations. We selected the main activities of 
a full servicing turnaround on aircraft parking at a contact point. In addition, we have not 
considered baggage transportation.  Baggage transportation has special features in relation to 
other ground-handling activities; i.e., more than one trip is needed to carry all of the bags, more 
than one baggage facility can be used, etcetera. It requires a specific model and solution method 
and is an important field for future research. 
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At each aircraft, the operations must be performed within the defined turnaround time. Hence, a 
time window to begin the service is assigned to each activity that considers the duration of each 
task and the precedence constraints. Ground-handling vehicles must visit the stand where the 
aircraft is parked in the given time window, perform the operations during a determined service 
time, and travel to the next stands to perform their next activities. 
 
Scheduling decisions made for one service affect other activities. Tasks belonging to the same 
aircraft are related according to the precedence restrictions, as well as to their corresponding 
time windows. The time when an operation begins thus could reduce the time windows of the 
other activities, depending on these restrictions, and consequently the performance of the 
vehicles servicing them. Optimizing each resource while considering the effect on other 
operations permits an integration of planning decisions and contributes to optimizing the overall 
ground service process. For instance, scheduling the vehicles to complete the tasks as closely as 
possible to the start of their time window leaves some room to address unexpected events or 
delays. This is conductive to a more robust global solution, that is, while the operations begin at 
their corresponding original time windows, a reschedule is avoided.  
 
Solving this problem consists of obtaining a schedule for the ground-handling vehicles that 
service the aircraft performing turnaround during one working day. The schedule must satisfy 
temporal, precedence, and capacity constraints. We aim to minimize the operation waiting time, 
i.e., accomplishing each operation as early as possible in relation to its original time window, 
�P�L�Q�L�P�L�]�L�Q�J���W�K�H���W�R�W�D�O���U�H�G�X�F�W�L�R�Q���R�I���W�K�H���W�L�P�H���Z�L�Q�G�R�Z�V���D�Q�G���F�R�Q�V�L�G�H�U�L�Q�J���W�K�H���Y�H�K�L�F�O�H�V�¶���X�W�L�O�L�]�D�W�L�R�Q����
This leads to a second objective: to minimize the total completion time of the ground services at 
each aircraft. That is, we want to balance robustness of scheduling each operation with good 
performance of the turnaround, using the vehicles efficiently. In addition, we focus on solving 
the problem at a tactical level. This means that vehicles are scheduled using estimated flight 
arrival and departures times, predicted duration of operations and a planned gate assignment. In 
this sense, we are concerned with developing a flexible algorithm that can obtain good solutions 
with a reasonable computational effort. 
  
Operational planning and resource allocation in ground-handling companies are conditioned by 
prior mid-term decisions, usually made one month ahead, and by external changes on the day of 
operation. In the mid-term planning, ground handlers work based on flight schedules, aircraft 
types to be serviced and, perhaps, expected airport resources. Using this information, the 
handling equipment is allocated according to the planned workload. This quite often leads to an 
inefficient use of resources and being in an uncomfortable position to address unexpected 
events. By employing an optimization process as in the proposed approach, ground handlers can 
improve the utilization of their equipment while reducing costs. Moreover, we aim with this 
approach to increase the robustness of the operational plan for the equipment allocated in the 
mid-term planning. Robust solutions are crucial on the operation day to performing the 
turnaround within very tight time windows. Short delays caused by late start of a turnaround, 
perturbations during operations or ground-handler underperformance can be absorbed. 
Otherwise, departure delays can be produced, which turn into economic penalties.  
 
Different activities and type of vehicles, each of them with their own available fleet, are then 
considered to study the ground-handling problem from a global perspective. Scheduling these 
vehicles to perform the services at different aircraft could be modeled as a VRPTW [14]. The 
ground-handling problem is separated using a decomposition schema inspired by the 
workcenter-based decomposition for Job Shop Scheduling [15], and one VRPTW is identified 
for each type of vehicle. The well-known Insertion Heuristics method [16] and a hybrid 
methodology [17] were used to solve each VRPTW sub-problem. In this methodology, 
Constraint Programming (CP) was combined with Large Neighborhood Search (LNS) and 
Variable Neighborhood Descent (VND). To address the bi-objective problem, a new method we 
call Sequence Iterative Method (SIM) has been developed. Modifying the order in which the 
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sub-problems are solved yields a range of solutions representing the best compromise between 
the two objectives.  
 
The remainder of this article is organized as follows. In Section 2, the previous work related to 
vehicle scheduling in ground handling, the VRPTW and multi-objective optimization are 
reviewed. The decomposition approach used and the problem formulation are described in 
Section 3. Then, the proposed solution method and the method to address the bi-objective 
problem is presented in Section 4. Next, computational results are presented and discussed in 
Section 5. Finally, conclusions and future research lines are provided in Section 6. 
 
2. Previous Studies 
 
2.1 Ground-handling vehicle scheduling  
 
Vehicle scheduling in the ground-handling process has received less attention than other airport 
resources; few works can be found in the literature. Moreover, most of the examples found are 
focused on one type of resource. To the best of our knowledge, none of these works examine the 
scheduling of ground-handling vehicles as a whole.  
 
Regarding ramp operations, Du et al. [12] proposed a model to schedule fueling vehicles based 
on the Vehicle Routing Problem with Tight Time Windows (VRPTTW) with multiple 
objectives. They considered minimization of the number of vehicles, the start time of the 
service, and the total servicing time of the trucks, following this order of importance. An 
improved Ant Colony algorithm is presented to address the multi-objective problem. Clausen 
[9] focused on connecting baggage transportation and proposed a greedy algorithm based on an 
Integer Programming model for the Vehicle Routing Problem with Time Windows (VRPTW). 
Norin et al. [7] proposed an interesting integration of a simulation model of various operations 
during turnaround and the scheduling of de-icing trucks obtained by a greedy optimization 
algorithm. Minimizing the delays as well as the traveling time of the trucks are the objectives 
defined. A more sophisticated solution was proposed by Ho & Leung [13] to tackle airline 
catering operations including staff workload. They presented a comparison between Tabu 
Search and Simulated Annealing approaches to solve the problem.  
 
2.2 VRPTW and the Multi-objective problem 
 
The Vehicle Routing Problem (VRP) is one of the most popular combinatorial optimization 
problems. It is aimed at determining an optimal set of routes for an available fleet of vehicles to 
service a set of customers, subject to different constraints. The VRPTW is an extension of the 
VRP in which each customer has a time window within which the vehicle must begin its task. 
The VRPTW has been extensively studied, and several formulations and exact algorithms have 
been proposed [18]. Solving this combinatorial optimization problem is NP-hard [19]; the use of 
heuristic algorithms [20], metaheuristics [21] and, recently, hybridization methods [22] has been 
a very important field of research.  
 
Many real-world optimization problems, including the VRPTW, involve more than one 
objective to be either minimized or maximized. The field of multi-objective optimization is 
drawing growing interest among researchers, particularly in VRPTW problems. To minimize 
the number of vehicles and the traveling distance, Gambardella et al. [23] implemented one of 
the more used methods: establishing a hierarchy between the objectives. In [12], a similar 
approach is used to solve a multi-objective model for scheduling fueling vehicles. Tan et al. [24] 
made a direct interpretation of the multi-objective problem using the concept of Pareto 
Optimality [25] in a hybrid multi-objective evolutionary algorithm (HMOEA), as did Ombuki et 
al. [26] with a genetic algorithm. A goal-programming model is proposed by Ghoseiri & Farid 
[27] in which the aspirations levels to the objectives and theirs deviations are minimized. Liu et 
al. [28] proposed a multi-objective heuristic in three phases to balance the workload, delivery 
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time and traveling distance among the vehicles. Hong & Park [29] also used a goal-
programming model to minimize total vehicle travel time and total customer waiting time. In a 
soft time window context, Müller [30] used the �0-constraint method to minimize the total cost 
and the penalties associated with violations of the time windows. Here, one of the objective 
functions is optimized and the other is converted into a constraint. For further examples and 
algorithms, an overview of the research in this area is presented in [31]. 
 
Usually, there is not a single solution optimizing all objectives simultaneously. Instead, different 
solutions can be found with a trade-off among the different objectives. The concept of 
domination or Pareto Optimality is used to determine this set of optimal solutions. It is said that 
a solution x dominates another y if and only if x is better than y in at least one objective and not 
worse in the other ones. That is, a solution is Pareto optimal if there is no other one that 
improves at least one objective function without sacrificing the others. Therefore, the obtained 
set of non-dominated points determines the Pareto optimal solutions of the multi-objective 
problem. A more formal definition of multi-objective problems and dominance is presented in 
[25].   
 
Methods to address Multi-Objective Problems (MOP) can be classified according to the role of 
the decision maker in the decision process [32]. The more common classes are a priori, a 
posteriori, and interactive methods. The a priori approach uses specific information about the 
relevance of the objectives and user preferences before the solution process. As a result, one 
solution is found according to these preferences. In the a posteriori schema, a set of Pareto 
optimal solutions is generated and the preference information of each objective is used to select 
the most satisfactory one. Finally, in the interactive methods, the preference information is 
updated during the solution process. 
 
Different examples of methods classified as described above can be found in the literature, each 
having strengths and weaknesses. A good summary is presented in [32,33]. The advantage of 
the a priori approach is that it can produce a single compromise solution without requiring 
further participation of the decision maker. One of the methods more widely used due to its 
simplicity is the weighted method. Specifically, it is  used in the mentioned de-icing trucks 
scheduling [7]. It involves aggregating all the objectives into one composite function with 
different weights that are used to indicate the relative importance among the criteria. However, 
there are problems in which expressing the preferences through values or correlate different 
objectives in the same function could yield inaccurate solutions [32,34].  
 
In our particular case, tackling the vehicle-scheduling problem as a bi-objective problem 
contributes to the global approach of the ground-handling problem, although it is not easy to 
define the relationships and the importance among the objectives. The first criterion addresses 
the VRPTW problem for minimizing the total customer waiting time. However, this leads to 
more vehicles being involved. Although minimizing the number of vehicles is not an explicit 
optimization objective, it should be considered to solve the problem. Having waiting time on the 
preceding operation does not always imply that successive operations could not be started at the 
earliest point of their time windows. For instance, let there be two tasks with different durations, 
which must be finished before a third one. The task with the shorter service time will end 
earlier, but the third operation might need to wait for the second task anyway. Hence, it is 
possible to use the vehicles more efficiently, allowing waiting time on the first activity without 
affecting the completion time of the overall performance. The second objective is focused on 
the turnaround process. It is important to perform each operation as early as possible to 
minimize the completion time of the turnaround. On the other hand, minimizing the completion 
time leads to a reduction of the time windows of the operations on the same aircraft and thus 
increases the number of vehicles needed. For that reason, obtaining a set of solutions with a 
trade-off between the objectives yields the possibility of selecting the one that better suits the 
problem.   
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3. Problem Decomposition and Formulation 
 
The decomposition schema used in this work is inspired by the workcenter-based 
decomposition for the Job Shop scheduling problem [15]. A workcenter is a group of machines 
performing similar operations. In this approach, the overall problem is broken down into 
workcenter-based sub-problems, and they are solved independently. The operations of a sub-
problem are related to other sub-problem operations by the precedence restrictions. Each time a 
sub-problem is scheduled, new constraints for the other operations are generated. Therefore, a 
method that integrates the sub-solutions and keeps the consistency of the overall solution is 
needed.  
 
In our problem, each type of vehicle can be viewed as a workcenter, and the vehicles available 
in the fleet as the machines. Additionally, each task must be performed by just one type of 
vehicle. Therefore, instead of solving a global VRPTW, it is possible to solve local VRPTWs 
for each type of vehicle. In addition, scheduling each type of vehicle separately permits the 
development of specific methods to tackle special features according to the operation they 
perform. On the other hand, the temporal restrictions on performing each operation due to the 
defined turnaround time and the precedence constraints must be tackled globally. This ensures 
that the local solutions can be integrated to obtain a complete solution. The decomposition 
schema is shown in Figure 2. A procedure we called Temporal Constraints Level Procedure 
(TCLP) was defined to satisfy the temporal restrictions. For each type of vehicle, a VRPTW is 
modeled using the defined Routing Level Procedure (RLP). F1 and F2 are the defined 
optimization objectives. 
 
                                    Global Problem
                                                    
                                         
                                                                            
                                                                               
                                                    

                                 
                                       

                                                     Sub-problems

TCLP

RLP1 RLP2 RLPn

...

...

�¦
�•

� 
N i

if11F
11f 21f n1f

2F

 
Figure 2. The problem decomposition schema 

 
The main features of this algorithm are modeled and implemented in Constraint Programming 
(CP). CP is a very attractive paradigm due to its expressiveness for modeling problems with 
side constraints. It has received much attention in recent decades due to its potential for solving 
real-world combinatorial optimization problems [35]. These applications often involve a 
heterogeneous set of side constraints and, typically, they must address frequent update/addition 
of constraints [36]. The flexibility of CP is thus a powerful characteristic because adding 
constraints is a modeling issue and does not affect the search process. In CP, problems are 
expressed by means of three elements: variables, their corresponding domains, and the 
constraints relating these variables. Solving a problem involves the assignment of values to the 
variables that satisfy all the constraints. This class of problems is usually termed Constraint 
Satisfaction Problems (CSP), and the core mechanism used in solving them is constraint 
propagation [37]. It involves deleting from variable domains values that cannot satisfy the 
problem constraints. When a value is assigned to a variable, it is propagated through the 
associated constraints to the rest of the variables involved in these constraints. If there are values 
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in other variable domains that are incompatible with propagated assignments, they are also 
removed [36]. Through constraint propagation, unfeasible alternatives are eliminated in 
advance, reducing the exploration of the search space. 
 
The parameters of the ground-handling problem are described as follow. Let �	� ���^�������������W�`��be the 
set of tasks to be carried out on the aircraft at its parking position. N= {1,..., n} is the set of 
scheduled aircraft performing a turnaround, and �ù��is the set of aircraft types. Each task i�•  �	 
according to aircraft type a �•  �ù has a duration �/ia, a requirement for goods �!ia, and precedence 
restriction rules �� ia, which represent the set of tasks that must be finished before task i can start 
on aircraft type a. Each task must be  performed by one type of vehicle. The set of types of 
vehicle is described by VT and each vt�•  VT has its own homogeneous fleet Mvt ={1..mvt} with 
capacity Qvt. 
 
For each aircraft j�•  N, the STAj and STDj are the scheduled arrival and departure times, 
respectively. The aircraft type is aj�•  �ù, and ��j�•  �+��is the stand where the aircraft is parked during 
the turnaround. �+ is t�K�H���V�H�W���R�I���S�D�U�N�L�Q�J���S�R�V�L�W�L�R�Q�V�����D�Q�G���Œij �Êi, j �•  �+, the traveling cost between 
�V�W�D�Q�G�V���D�Q�G���E�H�W�Z�H�H�Q���W�K�H�P���D�Q�G���W�K�H���Y�H�K�L�F�O�H���G�H�S�R�W���Œ0,i. 
 
There are O= T �uN operations to be performed by the vehicles from VT. An operation oij is a 
task i�•  �	 performed at an aircraft j �•  N according to aj�•  A, the aircraft type of j. 
 
3.1 Temporal Constraint Level Procedure (TCLP) 
 
In this level, the earliest and latest start times for each operation are obtained. Let the variable �2ij 
be the start time of each operation oij with a discretized initial domain �2��: [STAj..STDj]. The 
precedence restrictions are described by the following constraint: 
 

Nj,i'|,i',i  jiaja'ij'iij �•���<�•�7�•�����t �G�W�W   !  !  !  !  !  ! !!!!!!!!!!!!!!!!!!!! (1) 

Equation (1) ensures that temporal relationships among the tasks are fulfilled according to the 
type of aircraft to which they belong. When this restriction is propagated, the domain of the start 
time variable of each operation is reduced such that: �2ij:: [estij..lstij], where est and lst are the 
lower and upper bounds of �2���D�Q�G���U�H�S�U�H�V�H�Q�W���W�K�H���R�S�H�U�D�W�L�R�Q�¶�V���H�D�U�O�L�H�V�W���D�Q�G���O�D�W�H�V�W���V�W�D�U�W���W�L�P�H����
respectively. During the operation scheduling process, these time windows are modified due to 
the precedence restrictions. Note that the duration of the last operation, i.e., pushback, is not 
included. As mentioned, the end of the turnaround is defined as the start time of the pushback. 
 
Because the vehicles are routed separately, an explicit update process of the time windows is 
required to avoid inconsistency among sub-problems. Suppose two operations on the same 
aircraft, 11o  and 21o  such that 11o  must be finished before 21o  could start, that is, a11121 �G�W�W ���t . 
The difference between 11est  and 21est  is the duration of 11o , as well as between 11lst  and 21lst . 
Suppose also that the type of vehicle which performs 11o  is routed first and o11 is scheduled such 
that 1111 est�!�W . The value of 21est  is now a111 �G�W �� . Then, the time window of 21o  must be reduced. 
Otherwise, when the type of vehicle associated with 21o  is routed with the original time 
window, an infeasible solution might be obtained. Note that both the earliest and the latest start 
time could be reduced. For example, if 21o  is solved first, the 11lst  will be a121 �G�W �� . The strategy 
followed to update the time windows and ensure the consistency of the solutions is further 
explained in Section 4.  
 
3.2 Routing Level Procedure (RLP) 
 
When the time windows for each operation are calculated, a sub-problem is identified for each 
vt�•VT. We obtain the set of operations to be performed by each vt, Ovt={o1,..,on}, as well as the 
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duration do and the requirements for goods ro for each o�•Ovt according to the task and the 
aircraft type where the operation takes place. Because each routing problem is solved separately 
and to simplify the notation, we identify set Ovt as O ={1,..,n}. The CP model corresponding to 
each VRPTW sub-problem is based on the formulation presented in [38].   
 
Let V= O �‰F �‰L be the set of visits to be performed where set O= {1,..,n} represents the 
operations, i.e., the aircraft to be serviced. Two special visits describe the depot from which the 
vehicles start and finish their routes and are modeled by sets F= {n+1,..,n+m} and L= 
{�Q���P�������«,n+2m}, respectively. m is the number of vehicles needed for all the operations to be 
accomplished by fleet M= {���«�P}. Note that m is a parameter in our model. The visits fk= n+k, 
fk�•F and lk= n+m+k, lk�•L, represent the first and last visit of the vehicle k�•M, respectively. 
 
The following variables are defined: 

�x vi  �Êi �•  V: the vehicle which perform each visit i with domain v :: [1..m] 
�x pi �Êi �•  V�±F: the direct predecessor of a visit i with domain p :: [1..n+m] 
�x si �Êi �•  V �±L: the direct successor of a visit i with domain s :: [1..n,n+m+1..n+2m] 
�x ti �Êi �•  V: the time when the visit i is performed with domain t :: [esti..lsti]. Notice the est 

and lst values are those obtained from the TCLP procedure  
�x qi �Êi �•  V: the cumulated capacity after each visit i with domain q :: [0..Q] 

 
As mentioned, one of the optimization goals is accomplishing the operations as early as 
possible. Therefore, the objective function aims at minimizing the total difference between the 
earliest possible time a vehicle could perform each visit and the corresponding earliest service 
time. Let wi=ti-esti be this difference, that is, the client waiting time. The routing problem is 
then formulated as follows: 

�¦
�• Ni

i  w  min            (2) 

 
Subject to 

FVivv ipi ���•��� !   !  !  !  !  !  !  ! ! !!(3) 
LVivv isi ���•���  !  !  !  !  !  !  !  ! ! !!(4) 

Mkvv klkf �•��� !  !  !  !  !  !  !  !  ! !!(5) 
jiFVj,ipp ji ���š���•���z !  !  !  !  ! !! ! !! !  ! !!(6) 

jiLVj,iss ji ���š���•���z !  !  !  !  !  !  ! ! !!(7) 
FViis ip ���•��� !  !  !  !  !  !  !  !  ! !!(8) 
LViip is ���•���  !  !  !  !  !  !  !  ! !!!   (9) 

LVidtt ipiipipi ���•�������t �S  !  !  !  !  !  ! !! !  !  (10) 
FVidtt isiisisi ���•�������d �S !  !  !  !  ! ! ! !!  (11) 

FVirqq iipi ���•����� !  !  !  !  !  !  ! !! !  !  (12) 
LVirqq isisi ���•����� !  !  !  !  !  ! ! !!  !  !  (13) 

 
Constraints (3) and (4) ensure a visit, its predecessor and successor, are assigned to the same 
vehicle, as well as the first and last visit of this vehicle with constraint (5).  Inequalities (6) and 
(7) restrict a visit to have one and only one predecessor and successor, whereas constraints (8) 
and (9) keep the coherence between the successor and predecessor. To ensure the temporal 
precedence in a route, constraints (10) and (11) specify that the time to visit a client is at least 
(at most) the time to visit its predecessor (successor) plus (minus) the sum of traveling time and 
the duration of the service. Constraints (12) and (13) were defined to address the capacity 
restrictions of the vehicles. The goods picked up or delivered in the route are counted to keep 
the load along the route. 
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3.3 Decomposition bi-objective problem 
 
To obtain a more robust scheduling, the operations should be performed as early as possible 
within their original time windows. Because of the decomposition, the operation waiting time is 
calculated by the RLP with the updated time window (if it is reduced). If the size of the time 
window becomes smaller, most likely the waiting time would also be smaller, although it does 
not contribute to the solution robustness. Additionally, this reduction could lead to an increase 
in the vehicles needed.  
 
Therefore, our first objective aims at performing operations as soon as possible through two 
arguments: minimizing the total operation waiting time and the total reduction of the time 
windows. Le�W���¨i=(oesti-esti)+(olsti-lsti), where oesti and olsti mean the original values of the time 
windows obtained from the TCLP, i.e., the very earliest and latest start times for each operation. 
wi is the client waiting time set in Section 3.2. An aggregate function f1 is defined to describe 
how early the operations are performed in each routing problem: 

�� �� VTvtw1f
Ni

iivt �•�����'� �¦
�•

        (14) 

The first objective F1 is defined as: 
�¦
�•VTvt

vtf1min                       (15) 

Let l be the last operation on each aircraft and �2 the start time of operations defined in Section 
3.1; the second objective F2 of this problem is: 

�¦
�•Nj

ljmin �W                                                                                                                       (16) 

The objective function F2 minimizes the completion time in all aircraft. 
 
4. Solution Method 
 
In this section, we describe a new bi-objective algorithm developed for solving the ground-
handling problem. This method is based on a workcenter-based decomposition strategy [15]. 
 
Most workcenter-based decomposition methods are derived from the Shifting Bottleneck 
procedure [15] developed by Adams et al. [39] and later improved by Balas et al. [40]. This 
decomposition heuristic was originally implemented for the classical job shop-scheduling 
problem and then extended to model other versions such as sequence-dependent times and 
workcenter problems, also called the parallel machine problem. At each round, a critical 
unscheduled sub-problem according to the optimization criterion is identified and solved as a 
one-machine (or workcenter) scheduling problem. Using this result, each sub-problem solved in 
the previous iterations is re-optimized by solving again a one-machine problem, whereas the 
machines already scheduled remain fixed. This re-optimizing cycle is repeated a number of 
times, modifying the order in which the machines are solved.  
 
The Shifting Bottleneck is computationally intensive and involves solving many single 
machine-scheduling problems [41]. Applying this procedure in our particular case, where each 
sub-problem is a VRPTW, can lead to long execution times; the problem becomes impractical 
to solve. Thus, we followed a similar schema but combined two processes to obtain a complete 
solution at each iteration. In the first process, which we call Solving Process, all sub-problems 
are solved one after another given a predefined order. Each time a sub-problem is solved, the 
time windows of the remaining sub-problems are updated to maintain consistency among the 
sub-solutions. The Solving Process is embedded in an iterative schema that we call Sequence 
Iterative Method (SIM). The goal of this second process is to improve the overall solution when 
dealing with the defined bi-objective optimization problem. The sequence for solving the sub-
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problems is modified at each iteration according to the solution obtained, and the Solving 
Process is repeated with the new sequence.  
 
4.1 Solving Process  
 
In the Solving Process, sub-problems are identified and solved according to a given sequence. A 
schema of this process is shown in Figure 3. First, the TCLP implemented using CP is used to 
find the time windows of each operation. Then, a sub-problem is identified for each type of 
vehicle and a routing problem is solved by means of the RLP. 
 

Solving 
sequence

Obtain the initial  
time windows

Identify all the        
sub-problems 

Are all the sub-
problems solved? Exit

Update the time 
windows

N

Y
Routing a subproblem

Find an initial 
solution

Make a local 
search process

RLP

Select 
sub-problem 

TCLP

 
Figure 3. Flow diagram for the Solving Process   

The RLP procedure was developed in two stages. At the first stage, a well-known route 
construction heuristic is used to obtain a reasonably good initial solution (see Section 4.2). The 
number of vehicles obtained in this step is taken as an upper bound of the vehicles needed to 
perform the operations. Imposing this value as the size of the available fleet, a CP local search 
process is applied in the second stage to improve the initial solution. With this heuristic, we 
assume that there are sufficient resources to handle the airport workload. The CP methodology 
is described in Section 4.3. The aim of this step is to improve the initial solution by minimizing 
the operation waiting time, f1.  
 
After solving a sub-problem, an explicit process to update the time windows is needed to ensure 
consistency with the rest of the sub-problems, as explained in Section 3.1. Once again, taking 
advantage of the propagation of CP through the TCLP, a simple strategy is applied to maintain 
consistency. Finally, when all sub-problems are solved, the process is stopped. Algorithm 1 
describes the proposed Solving Process. 

 
1. Set SF �m�I  
2. Obtain the initial time windows by means of TCLP 

       3. Sub-problems solution by means of the RLP   
           3.1 Repeat until |SF|=|VT|  
                 a.  Choose si�•S 
                 b.  Obtain an initial solution for si using the I3 Insertion Heuristic   
                 c.  Apply the CP-based local search process 
                 d.  Set SF �mSF �‰{si} 
                 e.  Update the time windows of the sub-problems in S\SF by means of the TCLP         
Algorithm 1. Solving Process 
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Let S be the set of routing sub-problems to be solved, where |S|=|VT| and SF is the set of sub-
problems already solved SF �ŽS. To ensure coherence among sub-solutions, each time a sub-
problem is solved, the scheduled decisions are propagated to the rest of the sub-problems not 
yet solved, keeping the already-scheduled sub-problems fixed. First, no sub-problem has been 
solved. The very earliest and latest start time of each operation is obtained by means of the 
TCLP. When a sub-problem is scheduled, the start times of the operations belonging to this sub-
problem are calculated. Afterwards, the TCLP is recalled with the start times of the sub-
problems already solved. These values are propagated to the operations of the unscheduled sub-
problems, and their time windows are updated. This process is repeated for each sub-problem, 
always keeping the preceding scheduling decisions. Infeasible intermediate solutions are 
avoided using this strategy. Note that time window reductions depend on the order in which 
sub-problems are solved and affect the quality of the global solution. In fact, in the 
decomposition procedures based on Shifting Bottleneck, determining the next machine to be 
scheduled is one of the more important steps. According to [15], the sequence in which the 
machines are included in the partial schedule can reduce the re-optimization process without 
loss in solution quality. Then, the proposed iterative process (see Section 4.4) is developed, 
aiming at improving the solution by modifying the order in which sub-problems are solved.  
 
4.2 Initial solution  
 
The initial solution of each routing problem is obtained using the Insertion Heuristic method 
[16].  Solomon proposed three variants (I1, I2 and I3), each using a different criterion to select 
customers to be inserted in a route. Moreover, a set of parameters was defined that permits 
adjusting the solution method to solve different problems. In particular, we used the third 
heuristic (I3). 
 
It is known [16, 20] that I1 yields the best results, particularly for traveling distance, which is a 
critical decision rule in this case. Nevertheless, in our problem, we aim to minimize the 
operation waiting time without compromising the number of vehicles required. Hence, the route 
construction should be guided by both geographical and time criteria with similar importance. 
In I3, the combination of the additional distance and time required to visit a customer is used to 
decide the best insertion place and the client to be inserted. Note that in this case, I1 and I3 are 
�H�T�X�L�Y�D�O�H�Q�W���X�V�L�Q�J���W�K�H���I�R�O�O�R�Z�L�Q�J���S�D�U�D�P�H�W�H�U�V��������� �������I�R�U���,�����D�Q�G�����.3 =0) for I3. However, a third 
parameter is included in I3 to assign priority to a client having the lowest deadline to begin the 
service. Among other aspects, this parameter contributes to reducing the vehicle waiting time 
which, in turn, can lead to reducing the number of vehicles required. Thus, we have decided that 
I3 is the most appropriate heuristic to obtain an initial solution for our problem.   
 
4.3 Local search process 
 
A hybrid methodology based on [17] was selected to improve the initial solution found with I3. 
In this methodology, the modeling and the constraint propagation advantages of CP were 
combined with local search methods. Using the concept of operators based on Large 
Neighborhood Search (LNS) [42], the local search process is embedded in CP. These operators 
destroy and repair the solution to re-optimize parts of the problem. Destroy in this case means 
identifying a set of customers to remove from a solution. Repair refers to finding a better 
method to reinsert these customers into the partial solution. In addition, the methodology 
employs Variable Neighborhood Search (VNS) as a metaheuristic to guide the search. VNS was 
introduced by Hansen and Mladenovic [44] and has been applied to solve different variants of 
the VRP with interesting results [21,43,45,46]. Specifically, the Variable Neighborhood Descent 
(VND) [47] method has been adopted. A generic representation of this methodology is depicted 
in Figure 4. 
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Employing LNS within VND permits systematic exploration of the search space. Using VND, 
the algorithm moves from one operator to the next to escape from local minima. Any time an 
improved solution is found, the process is reset to the first operator; otherwise, the algorithm 
changes to the next operator.  
 

Exit

Y

Define kmax operators

N

�[���8 �['
�N���8 1

Y

N
If f(x') �”���I(x)

�N���8 �N+1

Initial solution x 

�N���”��kmax

Destroy xp�8 dk(x) 

Operator Ok

 (LNS)Repair x'�8 �Uk(xp) 

�N���8 1

 
Figure 4 Flow diagram of the VND schema using LNS operators 
 
Two operators have been used for solving our problem: the Random Pivot OPerator (RPOP) 
[17] and the SMAll RouTing (SMART) [43]. According to Rousseau et al. [43], the 
neighborhood structure defined by used operators should be different to succeed with the VND. 
In RPOP, individual customers are removed and re-inserted, whereas SMART works with arc 
exchanges.  
 
In RPOP, the destroy method consists of randomly selecting a pivot customer, which is 
removed from the solution. Then, a set of the nearest customers according to their geographic 
proximity is also removed, forming a hole around the pivot [17]. Two key aspects should be 
considered when implementing the destroy methods in operators: (i) how to select customers, 
and (ii) how many, i.e., the size of the neighborhood. Concerning the first point, a typical 
strategy is removing clients that are related according to some criteria, i.e., geographic 
proximity. As for the second consideration, small neighborhoods are usually preferred to large 
ones due to computational time limitations. In our particular problem, different operations 
(clients) can have the same parking position due to the length of the schedule time horizon. 
Hence, establishing temporal criteria seems more suitable to remove visits than using 
geographical rules. In the ground-handling problem, the time windows to accomplish the 
operations are generally tight, particularly when the activities have precedence restrictions. 
Therefore, we have defined the closeness of the time windows as the proximity metric of the 
RPOP. Regarding the number of clients, the RPOP operator is defined such that the number of 
visits removed is gradually increased each time the search becomes trapped in a local minimum. 
One single pivot is again selected when an improvement is found. An upper limit on the number 
of pivots is defined to avoid exploring too-large neighborhoods.  
 
In the SMART operator, sequences of arcs in different routes are removed instead of customers. 
First, a random primary pivot is identified and a certain number of clients after and before the 
pivot are disconnected, making a hole in its route. Then, a set of secondary pivots is selected, 
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that is, the one customer in each other route that can be visited in that hole while making a 
minimal detour. The same process is applied several times, and a number of precedent and 
successive customers are removed. 
 
A CP-based Branch and Bound (BB) procedure is employed as the repairing method in the 
RPOP operator. Constraint propagation provides efficiency to this pruning of the search tree 
each time the upper bound is updated when a better solution is found. Additionally, the 
combination of VND and LNS plays an important role because different neighborhoods can be 
explored and revisited iteratively with improved upper bounds [17]. Because this process is 
exact, a limited execution time is established to avoid excessive computational time. In the case 
of the SMART, Limited Discrepancy Search (LDS) is used in the CP-BB procedure for repairing 
the solution as suggested Rousseau et al. [43]. The SMART operator is more likely to produce 
large neighborhoods than is the RPOP. With LDS, large search spaces can be explored more 
quickly without notably compromising the quality of the solution.  
 
4.4 Sequence Iterative Method (SIM)  
 
As explained in Section 2.2, we define the ground-handling problem as a Multi-objective 
Optimization Problem (MOP), in particular, as a bi-criteria optimization problem. The first 
criterion relates to the quality of the local routing decisions and depends on the contraction of 
the time windows during the process. The second criterion can be observed as a global 
objective: minimizing the completion time of turnarounds. The iterative process was 
implemented to re-optimize the global solution due to the decomposition regarding the two 
defined objectives.    
 
Using a posteriori methods, the solution of the MOP is the set of non-dominated solutions, also 
called the Pareto optimal set. Depending on the problem, obtaining all Pareto optimal solutions 
is not guaranteed or can take high computational times [32,49]. Heuristic approaches, local 
search methods, metaheuristics, and evolutionary algorithms find approximations to the Pareto 
optimal set [50]. A definition of this approximation is also presented in the mentioned work: a 
solution y obtained by an algorithm A is Pareto optimal relative to A if A does not find another 
solution z such that z dominates y. In general, heuristic methods must be developed with two 
important principles: (i) find non-dominated points as close as possible to the optimal set and 
(ii) find solutions sufficiently diverse to provide a good coverage of this set [50]. 
 
Many methods such as the weighted method, �0-constraint, and goal programming among others 
solve the MOP by scalarization [31,32,49], i.e., transforming the problem into a single objective 
or a set of single objective problems. This strategy employs efficient and already tested single-
objective algorithms existing in the literature and applies them to solve the MOP. With the goals 
of more directly addressing the MOP and of finding a set of non-dominated points, these basic 
scalars, usually a priori methods, can be used as a posteriori approaches modifying the 
parameters. The �0-constraint procedure is commonly used with this approach. The problem is 
solved with respect to one objective and, at each iteration, the value of the second objective 
obtained is used as a constraint to limit the search space [30,32,49].  
 
Following this scalarization schema, we developed SIM to find the potential non-dominated 
solutions for our problem. The problem is solved with respect to the first objective, and the 
value of the second objective is calculated from the obtained solution. At each round, the 
sequence for solving the sub-problems is modified to find a solution in the Pareto set to cover it 
in the best possible way. Regardless of the type of aircraft, the ground-handling service always 
finishes by pushing away the aircraft from its parking position (pushback). We used this 
information to create an initial sequence to obtain a lower bound of F2. The sub-problems are 
ordered and solved such that a promising search space will be explored to improve F1 while a 
new value for the second objective is obtained. This method is described in Algorithm 2.  
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Definition S: set of sub-problems where |S|=|VT|, slo: last operation, BL: sub-problems to solve before slo 
SR: remainder of the sub-problems,  SSol: set of solutions found, 

  1   SSol �m�I   
  2   SR �msort SR by the values that were assigned to identify the sub-problems                 
  

      Step A. Initial solution  

           Initial sequence to obtain a lower bound of F2 
  3             BL �m�I  
  4             S �m{slo} �‰SR 
  5            <F1,F2> �mSolvingProcess(S)  
 

            Sequence to improve F1 keeping the position of slo  
 

  6             repeat 
  7                       SR' �msort SR by f1vt in a decreasing order 
  8                       S' �m{slo} �‰SR' 
  9                       <F1',F2'> �mSolvingProcess(S') 
  10                     if (F1'<F1) then 
  11                           SR �mSR' 
  12                           S �mS' 
  13                           f1vt �mf1vt' VTvt �•��  
  14                           F1 �mF1' 
  15                           F2 �mF2' 
  16                     end if 
  17           until F1 is not improved 
  18            SSol �m<F1,F2> 

 

       Step B. Set of solutions to improve F1 planning the rest of sub-problems before slo    

  19            repeat  
  20                      b �mmaxvt�•SR {f1vt} 
  21                      BL �m{b} �‰ BL 
  22                      SR �mSR\{b} 
  23                      S �mBL �‰{slo} �‰SR 
  24                     <F1,F2> �mSolvingProcess(S)  
  25                      SSol �m<F1,F2> �‰SSol 
  26                      repeat 
  27                                SR' �msort SR by f1vt in a decreasing order 
  28                                BL' �msort BL by f1vt in a decreasing order 
  29                                S' �mBL' �‰{slo} �‰SR' 
  30                                <F1',F2'> �mSolvingProcess(S')                             
  31                                if (F1'<F1) then 
  32                                     SR �mSR' 
  33                                     BL �mBL' 
  34                                     S �mS' 
  35                                     f1vt �mf1vt' VTvt �•��  
  36                                    F1 �mF1' 
  37                                    F2 �mF2' 
  38                                else if (F2'<F2) then  
  39                                         SSol �m<F1',F2'> �‰SSol 
  40                                end if 
  41                     until F1 is not improved         
  42               until |BL|=|S\{slo}|              
  43         return SSol 
 
Algorithm 2. Sequence Iterative Method (SIM) 

Let S be the set of sub-problems where each sub-problem corresponds to each type of vehicle 
involved, |S|=|VT|. Each sub-problem or type of vehicle has been identified with an integer (see 
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Figure 5). The order in S describes the sequence in which the sub-problems are solved; slo is the 
sub-problem corresponding to the last operation, pushback (PB) in this case; BL is the set of 
sub-problems to solve before slo such that BL �ŽS\{slo}, and SR represents the remainder of the 
sub-problems such that SR=S �� {slo} �� BL.  
 
In the first step of the algorithm, an initial sequence in S is created such that the slo is the first 
sub-problem to solve. When a sub-problem is solved first, the operations are scheduled within 
their original time windows. If this sub-problem is the pushback, a lower bound of F2 is 
obtained. On the other hand, this reduces the original time windows of the other tasks on the 
same aircraft, i.e., the time windows of the elements in SR. Therefore, a worse value of F1 is 
obtained. 
 
At first, the elements in SR are ordered by the values that were assigned to identify the sub-
problems. In principle, when solving the last operation first, the best value of F2 is obtained 
regardless the order of the elements in SR. However, solutions found should be as close as 
possible to the Pareto optimal set, i.e., a solution with a lower bound of F2 with the minimum 
value of F1. Therefore, after obtaining a solution with the initial sequence, the sub-problems in 
SR are ordered by f1, that is, the total operation waiting time of the associated routing problem. 
Then, we repeat the process to obtain a better sequence of SR.  
 
In the second step, we aim to improve the value of F1, planning the remainder of the sub-
problems before the last operation. At each round, the sub-problem with the highest value of f1 
in SR is selected for inclusion in BL and solved first. Adding sub-problems to BL, that is, 
prioritizing the other operations with respect to slo, usually leads to a decreasing F1. Similar to 
the above step, the chosen sub-problem is scheduled within its original time windows, which 
leads to a lower bound of its f1. To find a range of solutions that represents the Pareto set, one 
sub-problem is included in BL at each iteration. Thus, an improvement of F1 is reached when a 
new value of F2 is found. 
 
Finally, the process is repeated every time a new sub-problem is chosen. The goal of this step is 
to explore the search space by modifying the sequence of sub-problems in each subset while 
keeping the position of slo. 
 
5. Computational Experiments 

The algorithms described in this paper have been implemented in Java and linked to the open-
source CP software system ECLiPSe 6.0 [51]. All tests have been performed on a non-dedicated 
server with an Intel Xeon processor at 2.66GHz and 16GB RAM.   
 
In this implementation, we have specified the parameters of the algorithms as follows. First, we 
have tuned the I3 heuristic to obtain a compromise between minimizing operation waiting time 
and the number of vehicles. We defined an interval for each parameter such that �.1=[0.4,0.5], 
�.2=[0.4,0.5], �.3= [0.01,0.1], and the algorithm was tested on the different combinations. The 
best results are obtained with similar �.1 and �.2, as well as with a low �.3. In general, the 
customer waiting time begins to rise when �.3 takes values greater than 0.05, and its influence is 
bigger in the case of operations with larger time windows. Combination (�.1� �������������.2� �������������.3 
=0.02) yields the best result for most of the instances tested. Therefore, we have selected these 
values to specify the parameters. In addition, we have adjusted the initialization criterion to 
minimize the operation waiting time. The client having the earliest start time to begin the 
service was selected to initialize the routes.  
 
Second, we have set the parameters of the CP-based VND-LNS methodology. Regarding the 
SMART operator, we assigned 2 and 3 to the number of customers to be disconnected before and 
after the pivots. In addition, the number of discrepancies has been limited to 2. As for the 
RPOP, the maximum number of pivots to be chosen is set to 5, and the number of close 



17 
 

customers to be removed around the pivot is set to 7. Because operations generally have tight 
time windows, in our problem, removing customers closer to the pivot is more likely to produce 
feasible movements than client random selection. Thus, we assign a higher value to the second 
parameter. Furthermore, the branch-and-bound method used to repair the solution is limited to a 
maximum execution time of 30 seconds in both operators. The entire local search process is 
applied during a maximum of 250 seconds to ensure an improvement over the initial solution 
found by the I3 heuristic.  
 
5.1 Instances generation  
 
To the best of our knowledge, no benchmark instances exist for the ground-handling problem. 
Therefore, a set of scenarios was developed to validate the proposed approach.  
 
To test the algorithm, we need the information about three crucial aspects: flight schedule, 
aircraft parking distances, and tasks to be performed. We have used real data from two 
important airports in Spain: Palma de Mallorca (PMI) and Barcelona (BCN). In the case of 
PMI, we considered all aircraft performed a turnaround during a working day. In contrast, we 
focus on a handling company that provides services at the BCN airport. That is, we have 
employed the flight information used by the company to plan operations. Note that using data 
with very different characteristics is quite useful to test the efficiency of the approach. In 
addition to parking distances, the main difference between the two datasets used is the flight 
arrival frequency and the type of aircraft planned to be serviced.  
 
The following datasets were used to create the instances: 

a) Two real flight schedules: (i) one flight schedule from PMI airport corresponding to a 
summer business day with aircraft performing a turnaround; and (ii) one flight schedule 
from BCN with aircraft scheduled for service during a typical day in June. Both datasets 
include scheduled arrival and departure times, the type of aircraft, and the parking 
position.  
 

b) Distances between the parking positions and between them and the depot. PMI airport 
has 180 parking stands, 27 of them remote stands. BCN airport has 263 parking stands. 
A constant speed was used to calculate vehicle travel times. 
 

c) Tasks information: Using specifications from aircraft manufacturers 
[52,53,54,55,56,57,58], three types of aircraft with different sizes were modeled for the 
PMI set and nine for BCN. For each operation included in the problem and according to 
the type of aircraft, we considered the duration, precedence restrictions regarding other 
tasks, and the type of vehicle used. 

 
The vehicle that unloads and loads baggage for any given aircraft is usually the same. 
Therefore, we have modeled both operations as one task, the UL/L. The other operations are 
deboarding (DB), boarding (B), catering (Ca), cleaning (Cl), fueling (F), potable water (PW), 
and toilet services (TS). Precedence restrictions between the tasks for each aircraft type defined 
at PMI set are shown in Figure 5. The number assigned to identify each vehicle type is indicated 
in parentheses. We do not consider aircraft parked at remote stands. When aircraft are parked at 
a contact point, the DB and B operations do not have vehicles associated because they are 
performed by means of bridges connected to the gate. Nevertheless, these activities are very 
important during the turnaround service. They appear in precedence relationships, and their 
calculations affect the time windows of other operations. 
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Figure 5. Precedence relationships among tasks according to the modeled aircraft type: a) 
Aircraft Type I, b) Aircraft Type II, c) Aircraft Type III. The number of the associated vehicle 
type is indicated in parentheses 

According to these precedence relationships and the duration of operations, type I corresponds 
to aircraft with a turnaround time of between 30 and 40 minutes. Type II and type III are the 
aircraft with 40-50 minute and 50-60 minute turnarounds, respectively. The different 
characteristics of a turnaround, particularly the precedence relationships between operations at 
each aircraft, influence their time windows and, consequently, the solutions obtained. Airlines 
have some freedom within certain limits to modify the turnaround services specified by the 
aircraft manufacturers. For that reason, three sets of instances C1, C2 and C3 were generated, 
modifying the precedence constraints to test the algorithm. The first set was associated to the 
precedence rules presented in Figure 5. In the second set, the relationships between PW and TS 
were changed in types II and III, ensuring that TS is always performed before PW. In set C3, Ca 
is performed independently of the DB/B operations in all aircraft types.  
 
To simplify the scheduling process, the flight schedule has been divided into three eight-hour 
shifts scheduled separately.  In a given data set, the flight arrival frequency is relatively uniform 
during the day as is the expected workload. We have selected eight hours because this is the 
maximum duration of shifts. Shift duration can vary between 2 and 8 hours depending on 
several aspects such as staff policies, workload, etc. In general, the employees who drive the 
vehicles should come back to the depot when they finish their shift. Nevertheless, during these 
eight hours, a shift change can be performed or vehicles can be planned to come back to the 
depot for other reasons.  
 
In the PMI set, a first group J1 was created between 23:00 and 7:00 hours with 42 aircraft. The 
time interval between 7:00 and 15:00 hours with 64 aircraft corresponds to the J2 shift. The last 
group, J3, has 83 aircraft between 15:00 and 23:00. J1 has fewer aircraft scheduled compared 
with J2 and J3. However, the workload is similar because most of the aircraft are planned to 
arrive between 4:00 and 7:00 in the morning.  Each group was scheduled with the precedence 
rules defined at each set. We assume that workers are available to perform the service when a 
vehicle is assigned to an aircraft. 
  
Regarding the BCN dataset, there is more variety of aircraft sizes covering scheduled flights. 
We have represented nine types and their corresponding precedence constraints as outlined in 
Figure 6. Six different precedence relationships have been identified in the aircraft modeled.  
Notice that aircraft III, IV, V and VI have the same restrictions between the tasks. However, 
operations have different durations and aircraft have different turnaround times. As with the 
PMI instances, three sets C4, C5 and C6 were generated, modifying the precedence constraints. 
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The first set was associated to the precedence rules described in Figure 6. In the second set, the 
relationships between PW and TS were changed in (b) and (c), so TS is always performed 
before PW. In the C6 set, the Ca is performed independently of the DB/B operations in all the 
precedence relationships.  
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Figure 6. Precedence relationships among tasks according to the modeled aircraft type: a) 
Aircraft Type I, b) Aircraft Type II, c) Aircraft Type III;IV;VIII;IX, d) Aircraft Type V, e) 
Aircraft Type VI,  f) Aircraft Type VII. The number of the associated vehicle type is indicated in 
parentheses  

In the BCN case, flight arrival frequency is lower due to only a subset of the arriving aircraft 
during a day being handled by the company. In addition, aircraft are more uniformly distributed 
in the timetable with respect to PMI. Because the company only has aircraft planned between 
6:00 and 22:00 hours, the flight schedule was divided into two eight-hour shifts. A first group J4 
was created between 6:00 and 14:00 hours with 56 aircraft. The time interval between 14:00 and 
22:00 hours with 37 aircraft corresponds to the J5 group. Additionally, each group was 
scheduled with all different precedence constraint sets. Hence, the algorithm was tested over 15 
instances: 9 instances from PMI (C1J1, C1J2, C1J3, C2J1, C2J2, C2J3, C3J1, C3J2, C3J3), plus 
6 from BCN airport (C4J4, C4J5, C5J4, C5J5, C6J4, C6J5). Each instance is enumerated with 
the number of the set and the shift used. 
 
5.2 Results   
 
The detailed results of the problem C1J1 (precedence constraint rules C1, shift J1) for each 
iteration of the SIM are presented in Table 1. The results are obtained by running the algorithm 
only one time for each instance. In addition to the value of objectives F1 and F2, the obtained 
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sequences of tasks and the number of vehicles used for each operation are shown. A solution 
obtained after iteration is rejected if it has not improved either of the two objectives regarding 
the previous iteration. In this instance, the sequence was modified 13 times, but only one 
solution was discarded for that reason. Therefore, this problem has 12 solutions. As mentioned, 
the value of F1 is usually improved when the sub-problem with the highest f1 is included in BL 
to be solved first. In contrast, modifying the sequence of sub-problems keeping the position of 
PB is less likely to produce an F1 improvement. In this instance, F1 is always increased and the 
process is repeated only one time. The set of solutions is presented in Figure 7. In addition, we 
show the time spent by the algorithm to solve each sequence. 
 

UL/L(1) Cl(2) Ca(3) F(4) PW(5) TS(6) PB(7)
1 2383 1594 (7,1,2,3,4,5,6) 19 12 12 10 4 8 4 1426.5
2 2165 1613 (6,7,1,2,3,4,5) 18 12 12 9 6 7 4 1263.07
3 1980 1621 (5,6,7,1,2,3,4) 18 11 11 9 4 7 4 1473.71
4 2425 1619 (6,5,7,4,3,2,1) 18 11 12 9 6 7 4 1545.45
5 1850 1655 (4,5,6,7,1,2,3) 18 11 11 9 4 7 4 1257.29
6 2154 1646 (6,5,4,7,3,2,1) 18 11 12 9 6 7 4 1308.99
7 1709 1695 (3,4,5,6,7,1,2) 18 11 11 9 4 7 4 1357.83
8 1998 1681 (6,5,3,4,7,2,1) 18 11 11 9 6 7 4 1471.98
9 1565 1715 (2,3,4,5,6,7,1) 18 10 11 9 4 7 4 1348.54
10 1816 1687 (6,5,3,4,2,7,1) 17 10 11 9 6 7 4 1285.05
11 1510 1736 (1,2,3,4,5,6,7) 16 10 11 9 4 7 5 1348.22
12 1792 1714 (6,5,3,4,2,1,7) 16 10 11 9 6 7 5 1360.61

Time(s)N. It. F1 F2 Sequence
# Vehicles

 
Table 1. Solutions obtained for the instance C1J1 at each iteration of the SIM 

 
Figure 7. Found solutions for the instance C1J1. Each solution is labeled according to the 
iteration in which it is obtained. Non-dominated solutions, represented by bullets, define the 
trade-off curve between the two objectives. The crosses indicate dominated solutions 

The first solution in Table 1 corresponds to the first step of the algorithm and shows the 
sequence to obtain the lower bound of F2. Regardless of the problem, the process is always 
started with the same initial sequence of vehicles (7,1,2,3,4,5,6) (see Algorithm 2, step 1). As 
shown, the vehicle numbers have been assigned following the operations order presented in 
Figure 5. Each time a new sequence is obtained, the Solving Process is invoked and the routing 
problem associated to each type of vehicle is solved.  

In the next iteration, the sub-problem with the highest value of f1 is scheduled before PB, in this 
particular case, TS. The value of f1 depends on the reduction of the time window and the result 
of the routing problem. In general, it is possible to identify activities or groups of activities 
without precedence relationships in the turnaround. Regarding precedence restrictions and task 
duration, an activity or group of activities could be more restrictive than the other ones. The 
less-constrained operations have larger time windows, i.e., the service may be scheduled to 
begin with higher tolerance. This situation is similar to the case in which two operations with 
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different durations must be finished before a third one. The operation with the shorter duration 
or the larger time window may have some waiting time without affecting the third task. We use 
an upper bound for the number of vehicles; therefore, scheduling operations with larger time 
windows usually results in higher waiting times. When the less-constrained operations are 
included in BL before the other ones, the value of F2 is less affected. Usually, TS and PW are 
operations with short durations, and we could say they belong to the less-restrictive group in C1. 
The UL/L does not have precedence relationships with other operations, but it is the longest 
one. Operations F, Cl and Ca are constrained according to the precedence rules defined for each 
type of aircraft and are usually longer than TS and PW.  
 
Each time a new vehicle is included in BL, the vehicles are ordered again by their f1and the 
process is repeated. Operations PW and TS are interdependent; therefore, the one which is 
solved later will have a higher value of f1. In C1, PW is always performed before TS. When TS 
is scheduled before PW, a better value of F2 is reached at the expense of reducing the time 
window of PW. Notice in Table 1 the increase in the number of vehicles needed to perform PW 
whenever TS is scheduled first.  
 
Vehicle utilization is an important aspect of how the scheduling decisions of a resource affect 
the other ones. Notice, for instance, the increase in the vehicles needed to perform the 
operations whenever PB is solved first, particularly in the most constrained operations. 
Obtaining lower values of F2 implies a time window reduction on the operations at the same 
aircraft, and consequently an increment of employed vehicles. At the first iteration, the UL/L 
needs 19 vehicles, whereas it uses 16 when PB is scheduled last (solutions 11 and 12). This 
might be an interesting criterion to select a solution or prioritize an operation according to the 
particular situation of a vehicle type. For instance, the schedule associated with solution 9 is 
very similar to that of solution 11 regarding F1 and F2. However, the UL/L needs 18 vehicles in 
the former and 16 in the latter. The UL/L is usually the longest operation. If a delay or an 
unexpected event occurs, it is more likely to need a spare vehicle; therefore, solution 11 might 
be a good choice. On the other hand, the PB requires 4 and 5 vehicles in solutions 9 and 11, 
respectively. If vehicles needed to perform PB are more limited in number, or they are more 
expensive to use, solution 9 might be superior.  
 
A summary of the results obtained for all instances from PMI data is outlined in Table 2, in 
which the non-dominated solutions are marked with an asterisk. These solutions are shown in 
Figure 8. The sequences obtained for the three shifts are very similar for each set because the 
precedence relationships between operations are the same. Nevertheless, the number of aircraft 
of each type is different at each instance. In the case of the C2 set, the relationship between 
vehicles that perform PW and TS was modified in two aircraft types. The service time of PW is 
shorter than TS in all aircraft, but in type III, the difference is very small. Values of the 
objective functions are similar in shift J1 because there are few aircraft of type I. On the other 
hand, the variation is more important in J2 due there being more aircraft of type II. Regarding 
the C3 set, Ca does not have precedence relationships with the rest of the tasks. This favors the 
value of F2 because the group of DB and B is less restrictive. This also increases the time 
window of Ca because the operation is less constrained, and therefore fewer vehicles are needed 
to accomplish it. 
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F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2
1 2383* 1594* 3389* 2362* 4717* 3009* 2596* 1589* 3770* 2331* 4867* 2994* 2798* 1584* 3688* 2360* 4848* 3029*
2 2165* 1613* 4064* 2346* 4281* 3057* 2369* 1607* 3309* 2357* 4524* 3053* 2748* 1600* 4271* 2345* 4715* 3068*
3 1980* 1621* 3509 2403 4608 3067 2142* 1629* 3002* 2381* 4096* 3083* 2360* 1635* 3504* 2368* 4098* 3110*
4 2425 1619 2619* 2393* 3806* 3112* 2364* 1610* 3438* 2346* 4394 3104 2640* 1613* 3036* 2407* 4640* 3087*
5 1850* 1655* 2464* 2414* 3282* 3130* 1864* 1670* 2623* 2422* 3590* 3109* 2086* 1659* 3832 2403 3741* 3161*
6 2154 1646 3162 2399 4121* 3100* 2096* 1654* 2869* 2385* 3940 3153 2476 1639 2809* 2455* 4521 3133
7 1709* 1695* 2101* 2466* 3169* 3185* 1762* 1694* 2349* 2464* 3360* 3177* 1983* 1670* 3548 2447 3521* 3181*
8 1998 1681 2904 2464 3896 3173 1784* 1680* 2756 2444 3046* 3203* 2275 1662 2543* 2478* 4271 3186
9 1565* 1715* 1833* 2490* 2818* 3207* 1671* 1707* 2157* 2488* 3428 3215 1764* 1714* 2360 2517 3264* 3218*

10 1816* 1687* 2754 2486 3547 3197 1709* 1699* 2586 2486 2790* 3262* 2170 1692 3067 2514 3964 3200
11 1510* 1736* 1756* 2508* 2622* 3264* 1513* 1712* 1924* 2513* 3279 3286 1729* 1734* 2206* 2539* 3108* 3280*
12 1792 1714 2499 2509 3301 3252 1676 1710 - - - - 2054 1711 2863 2522 3690 3265

T.T.(s)

C3J2 C3J3

17.60518798.34

C2J3C2J2

18023.17 16375.34

C3J1
N. It.

C1J1 C1J2 C1J3 C2J1

16829.53 16254.9818112.82 18792.33 17971.83  
Table 2. Summary of results obtained for PMI instances. Values of objectives F1 and F2 using 
precedence constraint rules in C with shifts J are given for each column. The non-dominated 
solutions are marked with an asterisk 

 
Figure 8. Pareto solutions for PMI instances C1J2, C1J3, C2J1, C2J2, C2J3, C3J1, C3J2, and 
C3J 

In the case of BCN instances, the number of resources required to perform operations is one of 
the main differences regarding the PMI set. Many factors can influence these results, for 
example, task durations or turnaround times in each schedule. Moreover, the flight arrival 
frequency has a considerable effect on the number of vehicles. For instance, C4J5 and C1J1 
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have a similar number of scheduled aircraft, 42 and 37, respectively. However, further resources 
are needed in the former as shown in Tables 1 and 3.  
 

UL/L(1) Cl(2) Ca(3) F(4) PW(5) TS(6) PB(7)
1 4049 1359 [7,1,2,3,4,5,6] 11 7 7 6 2 4 2 1188.92
2 3577 1468 [5,7,1,2,3,4,6] 10 6 6 5 2 3 2 1333.95
3 3825 1449 [6,5,7,1,2,3,4] 10 6 6 5 4 3 2 1311.39
4 2999 1494 [5,6,7,2,4,1,3] 10 6 6 6 2 3 2 1331.87
5 2680 1595 [4,5,6,7,2,3,1] 9 6 6 5 2 3 2 1202.70
6 3252 1558 [6,5,4,7,2,3,1] 9 6 6 5 4 3 2 1339.12
7 2398 1681 [3,4,5,6,7,1,2] 8 6 6 5 2 3 2 1132.17
8 2928 1649 [6,5,3,4,7,1,2] 9 6 6 5 4 3 2 1290.72
9 2263 1715 [2,3,4,5,6,7,1] 8 6 6 5 2 3 2 1311.30

10 2846 1698 [6,3,2,5,4,7,1] 8 6 6 5 4 3 2 1116.89
11 2118 1754 [1,2,3,4,5,6,7] 8 6 6 5 2 3 2 1189.39

Time(s)N. It. F1 F2 Sequence
# Vehicles

 
Table 3. Solutions obtained for instance C4J5 at each iteration of the SIM 

A summary of solutions found for instances C4J4, C4J5, C5J4, C5J5, C6J4, and C6J5 is 
presented in Table 4. The non-dominated points are highlighted with an asterisk and are shown 
in Figure 9. Slightly higher values of F1 are obtained when J5 is performed with set C5. Unlike 
in J1, a higher number of aircraft with different durations of PW and TS are present in J5. When 
the precedence relationship between these operations is changed, obtained results can be 
affected. Solutions found with C6 showed similar behavior for both shifts J4 and J5. Because Ca 
is less constrained than in the original set C4, the time windows for performing the operation are 
longer and fewer vehicles are required. In general, this leads to obtaining worse values of F1 
because waiting times are increased. Nevertheless, having waiting time in the less-constrained 
operation permits vehicles to be used more efficiently without affecting the overall performance 
of the turnaround. 
 

F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2
1 6300* 2276* 4049* 1359* 6658* 2276* 4271* 1369* 7239* 2248* 4269* 1363*
2 5975* 2319* 3577* 1468* 6587* 2274* 3767* 1450* 6574* 2322* 3849* 1446*
3 5840* 2424* 3825* 1449* 5772* 2429* 3226* 1486* 6356* 2416* 4078* 1440*
4 5307* 2484* 2999* 1494* 5648* 2448* 3464* 1478* 5618* 2457* 3266* 1459*
5 4942* 2595* 2680* 1595* 5319* 2458* 3204 1632 5009* 2572* 2882* 1524*
6 5684 2586 3252* 1558* 4826* 2632* 2988* 1552* 5863 2577 3556 1534
7 4608* 2736* 2398* 1681* 5306 2627 2730* 1666* 4784* 2682* 2696* 1630*
8 4200* 2833* 2928 1649 4524* 2693* 2611 1722 5639 2630 3196 1573
9 5012 2753 2263* 1715* 4469* 2801* 2553* 1709* 4739* 2776* 2363* 1683*

10 4100* 2838* 2846 1698 4249* 2857* 2560 1731 5261 2717 2998 1632
11 4875 2833 2118* 1754* 4768 2855 2418* 1745* 4487* 2843* 2133* 1753*
12 - - - - - - - - 5322 2830 2949 1736

T.T. (s)

C6J4 C6J5

18438.25 17201.87 18982.47 18564.34 17345.39 16902.98

N. It.
C4J4 C4J5 C5J4 C5J5

 
Table 4. Summary of results obtained for BCN instances. Values of objectives F1 and F2 found 
using precedence constraint rules in C with shifts J are given for each column. The non-
dominated solutions are marked with an asterisk 
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Figure 9. Pareto solutions for BCN instances 

 
5.3 CP-based VND-LNS evaluation 
 
Depending on the problem, CP can be expensive in computational time. However, it provides 
other advantages such as the flexibility to add new constraints without affecting the search 
process. According to [21], the CP-based approach proposed by Rousseau et al. [43] may be 
more effective in real-life applications in spite of its long running time, as are other flexible 
methods.  In our case, each ground-handling operation or vehicle type has special characteristics 
depending on many factors, e.g., airline policy, airport size, etc. In addition, these particular 
features usually involve heterogeneous side constraints. Thus, flexibility and expressiveness for 
modeling constraints are crucial aspects to be considered. Because we aim to use this approach 
at a tactical level, we have more available time than would be available at an operational level. 
Therefore computational time becomes less of an issue. 
 
To evaluate the efficiency of the adopted CP-based VND-LNS we have compared the 
methodology with some state-of-art algorithms for solving VRPTW problems. First, we have 
used the well-known benchmark set developed by Solomon [16]. Second, we have implemented 
the simulated annealing (SA) method presented in [59] for scheduling the handling vehicles in 
our bi-objective approach.  
 
Solomon instances are divided into six classes: R1, R2, C1, C2, RC1 and RC2. Customers in C1 
and C2 are grouped in clusters whereas they are randomly distributed in R1 and R2. Classes 
RC1 and RC2 have a mix of random and clustered distribution. Benchmarks are given in terms 
of distance and number of vehicles. In our problem, we have employed the methodology to 
minimize operation waiting time. The I3 heuristic was used to obtain an initial solution that 
improves this objective without compromising the number of vehicles required. Therefore, 
some adjustments of the algorithm should be done to use Solomon sets for comparison. First, 
we modified the optimization objective of the algorithm to traveling distance. In addition, we 
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used the I1 variant to make a fairer comparison. As mentioned, I1 yields the best distance 
results. Therefore, it is the more appropriate variant to minimize traveling distance. In this case, 
we used the parameter settings used by Solomon to obtain the best solutions. Regarding the 
parameters of the VND-LNS local search process, we used the same values in the case of the 
SMART operator. Values of RPOP are also the same, except that the maximum number of 
pivots is set to 7. Due to benchmark instances having wider time windows than do operations at 
the airport, more computational time is needed to improve the solutions. A CP-based algorithm 
is expected to behave better as the problem gets tighter. When domains are larger, the algorithm 
tries more values for each variable, growing the search tree size. We have increased the limit of 
the branch-and-bound method to 50 seconds, and the process is applied for 500 seconds. The 
results are also obtained by running the algorithm only one time for each instance. 
 
Average results obtained with our approach (OS) for each class are outlined in Table 5. The 
number of vehicles and the total traveling distance (TD) are shown. We have compared our 
results with the best known solutions (BKS) [60] and with the SA method [59, 61]. In addition, 
we have included a hybrid approach [62] and a recent LNS algorithm [63]. The relative error 
(Gap) between OS and the other approaches has been calculated. 
 
 

Gap(%) Gap(%) Gap(%) Gap(%)

# Veh. TD # Veh. TD OS-BKS # Veh. TD OS-SA # Veh. TD OS-[61] # Veh. TD OS-[62]

C1 10.00 828.38 10.00 847.58 2.32 10.00 828.38 2.32 10.00 828.50 2.30 10.00 833.10 1.74
C2 3.00 589.86 3.00 606.25 2.78 3.00 589.86 2.78 3.00 590.06 2.74 3.00 590.31 2.70

RC1 11.50 1384.16 12.88 1455.61 5.16 11.50 1384.38 5.15 11.88 1414.86 2.88 12.13 1369.57 6.28
RC2 3.25 1119.24 3.875 1295.75 15.77 3.25 1144.95 13.17 3.25 1258.15 2.99 3.75 1131.18 14.55
R1 11.92 1210.34 12.66 1300.50 7.45 12.25 1203.37 8.07 12.17 1251.40 3.92 12.25 1218.28 6.75
R2 2.73 951.03 3.63 1117.54 17.51 2.91 962.51 16.11 2.73 1056.90 5.74 3.27 964.11 15.91

Hong [61]
Prob

BKS OS SA Berger et al.[60]

 
 
Table 5. Average results for the Solomon benchmarks obtained with our local search approach 
(OS). Results from the Simulated Annealing (SA) method [59,61], Berger et al. [62], and Hong 
[63] are included for comparison 
 
As observed, the results of classes C1 and C2 are better than those obtained for classes RC and 
R. Our solutions in class C are closer to the best known solutions having a gap between 2 and 3 
percent. In the ground-handling problem, visits are generally clustered due to the distribution of 
stands around the terminal. Moreover, distances are shorter with respect to benchmark 
problems. In relation to problems R and RC, they are far from the best results. The reason may 
be found on the fact that the algorithm is stopped after 500 seconds, not providing enough time 
to reach a minimum.   
 
The next step was to evaluate the CP-based methodology for solving the VRPTWs in the 
ground-handling problem. The SA method addresses the bi-objective nature of classical 
VRPTW, i.e. minimizing number of routes and distance travelled, in this order. It has found 
new best solutions for two Solomon problem instances [60]. For solving our problem, the cost 
function of SA was modified to obtain a compromise between minimizing number of vehicles 
(weighted by parameter a) and waiting time (weight b). We have adjusted a and b such that 
similar number of vehicles with respect to our methodology are obtained. After running several 
experiments we have set a to 30, 55 and 100 depending on to the instance and b =1. Moreover, 
the number of annealing steps and iterations has been tuned to improve the performance of SA. 
Good results were found with n2 to 4n2 steps and between 20 and 90 iterations. Regarding 
remaining parameters, the same setting proposed by the author were employed.  
 
We have tested SA on instances C1J1, C2J2, C3J3, C4J4, and C4J5 and we show in Figure 10 
the non-dominated solutions obtained with both methods. Visually, Pareto frontiers are similar. 
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Solutions found with the same sequences are in general non-dominated, i.e. if one objective is 
improved with SA the other is worst with respect to CP-based VND-LNS. The most notable 
difference is the space covered by the Pareto set in instances C1J2 and C1J3. Also, there is a 
small variation in the number of non-dominated solutions found.  
 
To make a more precise comparison we have selected the coverage metric used in [64]. 
Different performance metrics have been proposed to compare results in a multi-objective 
context. In particular, the coverage metric measures the number of solutions of one algorithm 
that dominates the solutions of another algorithm. The coverage, average fleet size and 
execution time associated to each instance are presented in Table 6.    

 
Figure 10. Pareto solutions obtained with our local search approach (OS) and the Simulated 
Annealing (SA) method. Crosses and bullets represent OS and SA solutions, respectively 
 
The coverage C(A,B) value is an interval [0,1] in which C(A,B) = 1 means that all solutions of 
B are covered by A. In contrast, none of the solutions in B are dominated by A when C(A,B)=0. 
Both C(A,B) and C(B,A) need to be calculated since C(A,B) =1- C(B,A) is not necessarily true. 
As observed, either C(OS,SA) and C(SA,OS) values are less than 0.5 for all instances. That is, 
most solutions are non-dominated between them and algorithms are comparable.  In the case of 
instances C1J2 and C4J5 there is a slight difference between both methods. SA improves the 
Pareto set in C1J3 while our approach is better in C4J4.  
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#Vehicles Time (s) C(OS,SA) #Vehicles Time (s) C(SA,OS)
C1J1 9.41 16829.53 0.33 9.36 12580.97 0.13
C1J2 7.61 18023.17 0.16 7.42 15966.86 0.14
C1J3 6.54 16375.34 0.17 6.69 17460.36 0.38
C4J4 4.28 18438.25 0.33 4.22 18220.93 0.00
C4J5 4.9 17201.87 0.29 4.99 12836.44 0.37

Problem
OS SA

 
Table 6. Coverage, average fleet size and execution time obtained by using OS and SA for 
instances C1J1, C1J2, C1J3, C4J4 and C4J5  
 
Regarding the computational effort, SA provides a higher performance for instances C1J1, 
C1J2, and C4J5. However, annealing steps and iterations needed to be adjusted for each 
instance to obtain good results in a good time. 
 
We consider that the CP methodology is an efficient method for scheduling ground-handling 
vehicles. It is a fact that SA yields better results for the Solomon instances. However, both 
methods are comparable when solving VRPTWs associated to the ground-handling problem. 
SA has a time advantage but it needs a harder parameter adjustment, which can be a major 
drawback for real problems. The CP-based VND-LNS requires more time but solution quality is 
comparable. In addition, our approach is more flexible to extend, a powerful feature to address 
the particularities of ground-handling activities.  
 
5.4 Evaluation of SIM  
 
In workcenter-based decomposition methods, which are the reference cases for SIM, sub-
problems are solved in several sequences to improve the global solution.  In our problem, the 
SIM method modifies these sequences to find Pareto solutions for the bi-objective optimization 
problem. Considering that solving each VRPTW is a complex problem, SIM was defined to find 
a minimum set of solutions that can provide a proper representation of the Pareto set. Making an 
exhaustive exploration and obtaining all possible solutions allows us to assess the performance 
of the heuristic. However, computing all possible combinations, or even a high number as in 
workcenter-based methods, is not viable in terms of computational effort.  
 
The local search process is clearly the most time-consuming part of the algorithm, whereas a 
quick, reasonably good initial solution is found by I3. Thus, we have run SIM to solve each 
routing problem only with I3. Next, we compared SIM solutions with results found through an 
exhaustive exploration of sequences, also with I3. Thus, we can verify how close SIM solutions 
are to the Pareto frontier. Note that sequences produced by I3 are not necessarily the same as 
using the local search process. However, this provides an effective mechanism to test the 
performance of SIM.  
 
SIM takes less than 1 second to generate a set of solutions.  The maximum number of sequences 
in an exhaustive exploration is a permutation of all vehicle types. In this problem, we have 7 
vehicle types; therefore, an acceptable amount of CPU time is required to produce all solutions. 
The algorithm spends approximately 8 minutes on each instance; therefore, this is a viable 
option in this case. We have selected instances C1J1, C2J2, C3J3, C4J4, and C4J5 to test. The 
results are depicted in Figure 11. 
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Figure 11. Solutions obtained by SIM and using an exhaustive exploration for instances C1J1, 
C1J2, C1J3, C4J4 and C4J5. Black and white bullets represent SIM and exhaustive exploration 
solutions, respectively 
 
Notice that in less than 1 second, SIM is able to find Pareto solutions and provide a good 
coverage of the frontier for most instances. Regarding instance C4J5, the coverage reached is 
more discrete. This can be caused by the fact that there is a lower density of points on the Pareto 
set, and non-dominated solutions are far from the rest. Considering that only a small subset of 
solutions is explored in a minimum time, we consider that SIM provides a good representation 
of the Pareto set.  
 
6. Conclusions and Future Research  
 
In the present paper, we propose a first approach for scheduling ground-handling vehicles at an 
airport. Different operations and types of vehicles have been considered to tackle this problem 
from a holistic perspective. We have modeled ground-handling services as a bi-objective 
optimization problem, aiming to integrate the scheduling decisions about each resource and to 
contribute to the optimization of the overall process. This goal is defined through two 
objectives: (i) minimizing the operations waiting time and the total reduction of the time 
windows, and (ii) minimizing the total completion time of the turnarounds.   
 
The problem has been decomposed to allow the model and the solution method to be simplified 
without losing the global approach of the proposal. First, time windows to complete operations 
are obtained according to precedence constraints and turnaround time. One VRPTW for each 
operation is identified and solved separately, and decisions made are propagated to the other 
VRPTWs by reducing their time windows. This decomposition schema ensures that local 
routing solutions can be integrated to obtain a consistent global solution. Time window 
calculations as well as the reduction process have been performed very efficiently through 
�&�R�Q�V�W�U�D�L�Q�W���3�U�R�J�U�D�P�P�L�Q�J�¶�V���S�U�R�S�D�J�D�W�L�R�Q���P�H�F�K�D�Q�L�V�P���� 
 
A quick first solution for each routing problem is obtained using the Solomon Insertion 
Heuristic I3 method. A CP-based VND-LNS methodology to solve the VRPTW is applied as a 
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local search process. This approach has been demonstrated to be effective at improving these 
initial solutions. A new method we called Sequence Iterative Method was developed to improve 
the global solution when dealing with the bi-objective problem.  
 
The approach was tested using real-life data from the Palma de Mallorca and Barcelona airports 
and specifications from aircraft manufacturers. The results show that different solutions 
representing a trade-off between objectives were found, thus modifying the order in which 
vehicles are scheduled. Moreover, the number of vehicles needed to perform operations can 
change according to this order. This might be an important criterion to select between two 
solutions with similar values of the objective functions. Schedules in which longer operations 
use fewer vehicles could favor the robustness of the solution because they leave spare vehicles 
that could be used in case of unexpected events or delays. Prioritizing activities with expensive 
or fewer available vehicles might be another aspect contributing to the overall process 
optimization. In addition, allowing some waiting time on the less-constrained operations leads 
to saving on resources utilization without affecting the completion time of the turnaround.  
 
Different aspects remain for further development of the presented work. We have considered the 
most important operations during a turnaround, but we did not consider baggage transportation 
or passenger transfer when aircraft are parked at a remote stand. Although we obtained 
interesting conclusions on how the scheduling decisions of a resource affect scheduling of other 
resources, the inclusion of these additional operations will further improve and enrich this study. 
Furthermore, we have assumed a homogeneous fleet of each type of vehicle. Usually, vehicles 
are compatible with a specific type of aircraft and cannot serve other types. Hence, considering 
a heterogeneous fleet and including this constraint in the model is another topic for future 
research. To this end, the flexibility of the adopted CP-based local search process allows 
introducing new constraints with minimum modifications in the methodology. Including 
manpower planning and rostering would also be an interesting topic for future development of 
our approach. 
 
ACKNOWLEDGEMENTS:  
NICTA is funded by the Australian Government through the Department of Communications 
and the Australian Research Council through the ICT Centre of Excellence Program. 
 
References  
 
[1] EUROCONTROL. CODA Digest - Annual 2012. Delays to Air Transport in Europe; 2012. 
[2] EUROCONTROL. Airport CDM Operational Concept Document; 2006. 
[3] SESAR. Milestone Deliverable D1: Air Transport Framework: The Current Situation; 2008. 
[4] TITAN. Operational Concept �± Issue 1. Turnaround Integration in Trajectory and Network 
Project; 2010. 
[5] TITAN. Analysis of current situation. Turnaround Integration in Trajectory and Network 
Project; 2010. 
[6]  Fricke H, Schultz M. Delay impacts onto turnaround performance. Eighth USA/Europe Air 
Traffic Management Research and Development Seminar (ATM2009); 2009. 
[7] Norin A, Granberg TA, Värbrand P, Yuan D. Integrating optimization and simulation to 
gain more efficient airport logistics. Eighth USA/Europe Air Traffic Management Research and 
Development Seminar (ATM2009); 2009. 
[8] ARC. Study on the Impact of Directive 96 / 67 / EC on Ground Handling Services 1996-
2007 Final Report. Airport Research Center; 2009. 
[9] Clausen T. Airport ground staff scheduling. PhD Thesis. Technical University of Denmark; 
2011. 
[10] Leeuwen P van. CAED D2: Modelling the Turnaround Process, CARE INO III: The Co-
ordinated Airport through Extreme Decoupling. Eurocontrol; 2007. 



30 
 

[11] Schmidberger S, Bals L, Hartmann E, Jahns C. Ground handling services at European hub 
airports: Development of a performance measurement system for benchmarking. International 
Journal of Production Economics 2009; 117(1):104�±116. 
[12] Du Y, Zhang Q, Chen Q. ACO-IH: An improved ant colony optimization algorithm for 
Airport Ground Service Scheduling. IEEE International Conference on Industrial Technology; 
2008, p 1-6. 
[13] Ho SC, Leung JMY. Solving a manpower scheduling problem for airline catering using 
metaheuristics. European Journal of Operational Research 2010; 202(3): 903�±921. 
[14] Cordeau JF, Desaulniers G, Desrosiers J, Solomon MM, Soumis F. The VRP with time 
windows. In: Toth P, Vigo D, editors. The Vehicle Routing Problem, USA: SIAM; 2002, pp. 
157�±186. 
[15] Sourirajan K, Uzsoy R. Hybrid decomposition heuristics for solving large-scale scheduling 
problems in semiconductor wafer fabrication. Journal of Scheduling 2007; 10(1): 41�±65. 
[16] Solomon, MM. Algorithms for the vehicle routing and scheduling problems with time 
window constraints. Operations research 1987; 35(2): 254�±265. 
[17] Guimarans D. Hybrid algorithms for solving routing problems. PhD Thesis. Autonomous 
University of Barcelona; 2012. 
[18] Kallehauge B. Formulations and exact algorithms for the vehicle routing problem with time 
windows. Computers & Operations Research 2008; 35(7): 2307�±2330. 
[19] Lenstra JK, Kan AHGR. Complexity of vehicle routing problem with time windows 1981; 
Networks 11: 221�±227. 
[20] Bräysy O, Gendreau M. Vehicle routing problem with time windows, Part I: Route 
construction and local search algorithms. Transportation science 2005; 39(1): 104�±118. 
[21] Bräysy O, Gendreau M. Vehicle routing problem with time windows, part II: 
Metaheuristics. Transportation science 2005; 39(1): 119�±139. 
[22] Jourdan L, Basseur M, Talbi EG. Hybridizing exact methods and metaheuristics: A 
taxonomy. European Journal of Operational Research 2009; 199(3): 620�±629. 
[23] Gambardella LM, Taillard E, Agazzi G. MACS-VRPTW. A multiple ant colony system for 
vehicle routing problems with time windows. In: Corne D, Dorigo M, Glover F, editors. New 
Ideas in Optimization, London: McGraw-Hill; 1999, pp. 63�±76. 
[24] Tan KC, Chew YH, Lee LH. A Hybrid Multiobjective Evolutionary Algorithm for Solving 
Vehicle Routing Problem with Time Windows. Computational Optimization and Applications 
2005; 34(1): 115�±151. 
[25] Collette Y, Siarry P. Multiobjective Optimization: Principles and Case Studies, Berlin: 
Springer; 2003. 
[26] Ombuki B, Ross BJ, Hanshar F. Multi-Objective Genetic Algorithms for Vehicle Routing 
Problem with Time Windows. Applied Intelligence 2006; 24(1): 17�±30. 
[27] Ghoseiri K, Ghannadpour SF. Multi-objective vehicle routing problem with time windows 
using goal programming and genetic algorithm. Applied Soft Computing 2010; 10: 1096�±1107. 
[28] Liu C, Chang TC, Huang LF. Multi-objective heuristics for the vehicle routing problem. 
International Journal of Operations Research 2006; 3(3): 173�±181. 
[29] Hong SC, Park YB. A heuristic for bi-objective vehicle routing with time window 
constraints. International Journal of Production Economics 1999; 62(3), 249�± 258. 
[30] Müller J. Approximative solutions to the bicriterion Vehicle Routing Problem with Time 
Windows. European Journal of Operational Research 2010; 202(1): 223�±231. 
[31] Jozefowiez N, Semet F, Talbi EG. Multi-objective vehicle routing problems. European 
Journal of Operational Research 2008; 189(2): 293�±309. 
[32] Miettinen K. Introduction to Multi-Objective Optimization: Noninteractive approaches. In: 
Branke J, Deb K, Miettinen �.�D�L�V�D�����6�á�R�Z�L���V�N�L���5�����H�G�L�W�R�U�V�� Multiobjective Optimization 
Interactive and Evolutionary Approaches, Lecture Notes in Computer Science, vol. 5252, 
Berlin: Springer; 2008, pp. 1�±25. 
[33] Miettinen K, Ruiz F, Wierzbicki AP. Introduction to Multi-Objective Optimization: 
Interactive approaches. In: Branke J, Deb K, Miettinen K�����6�á�R�Z�L���V�N�L���5�����H�G�L�W�R�U�V�� Multiobjective 
Optimization Interactive and Evolutionary Approaches, Lecture Notes in Computer Science, 
vol. 5252, Berlin: Springer; 2008, pp. 27�±57. 



31 
 

[34] Fonseca CM, Fleming PJ. An Overview of Evolutionary Algorithms in Multiobjective 
Optimization. Evolutionary Computation 1995; 3(1): 1�±16. 
[35] Rossi F, Beek P van, Walsh T. Handbook of Constraint Programming, Elsevier Inc; 2006. 
[36] Focacci F, Laburthe F, Lodi A. Local search and constraint programming. In: Glover F, 
Kochenberger G.A, editors. Handbook of Metaheuristics, Boston: Kluwer Academic; 2003, pp. 
369�±403. 
[37] Bessiere C. Constraint Propagation. In: Rossi F, van Beek P, Walsh T, editors. Handbook 
of Constraint Programming, Elsevier Science Inc; 2006, pp. 29�±69. 
[38] Kilby P, Shaw P. Vehicle routing. In: Rossi F, van Beek P, Walsh T, editors. Handbook of 
Constraint Programming, Elsevier Science Inc; 2006, pp. 801�±836. 
[39] Adams J, Balas E, Zawack D. The Shifting Bottleneck Procedure for Job Shop Scheduling. 
Management Science 1988; 3: 391�±401. 
[40] Balas E, Lenstra JK, Vazacopoulos A. The one machine problem with delayed precedence 
constraints and its use in job shop scheduling. Management Science 1995; 41: 94�±109. 
[41] Lafayette W. A Computational Study of Shifting Bottleneck Procedures for Shop 
Scheduling Problems. Journal of Heuristics 1997; 3(2): 111�±137. 
[42] Shaw P. Using constraint programming and local search methods to solve vehicle routing 
problems. 4th International Conference on Principles and Practice of Constraint Programming. 
Lecture Notes in Computer Science 1520, Springer-Verlag; 1998, pp 417�±431. 
[43] Rousseau LM, Gendreau M, Pesant G. Using constraint-based operators to solve the 
vehicle routing problem with time windows. Journal of Heuristics 2002; 8(1): 43�±58. 
[44] Mladenovic N, Hansen P. Variable neighborhood search. Computers & Operations 
Research 1997; 24(11): 1097�±1100. 
[45] Bräysy O. A Reactive Variable Neighborhood Search for the Vehicle Routing Problem 
with Time Windows. INFORMS Journal on Computing 2003; 15(4), pp. 347�±368. 
[46] Guimarans D, Herrero R, Ramos JJ, Padrón S. Solving vehicle routing problems using 
constraint programming and lagrangian relaxation in a metaheuristics framework. International 
Journal of Information Systems and Supply Chain Management 2011; 4(2), 61�±81. 
[47] Hansen P, Mladenovic N. A tutorial on variable neighborhood search. Tech. Rep. No. G-
2003-46, Montreal: Les Cahiers du GERAD, HEC Montreal and GERAD; 2003. 
[48] Harvey W D and Ginsberg M L. Limited discrepancy search. International Joint 
Conference on Artificial intelligence IJCAI;1995. 
[49] Gavanelli M. An algorithm  for multi-criteria optimization in CSPs. International 
Conference on Integration of Artificial Intelligence and Operations Research techniques in 
Constraint Programming ���&�3�$�,�2�5�¶������; 2002, pp. 2�±6. 
[50] Jozefowiez N, Glover F, Laguna M. Multi-objective Meta-heuristics for the Traveling 
Salesman Problem with Profits. Journal of Mathematical Modelling and Algorithms 2008; 7(2), 
177�±195. 
[51] Apt K, Wallace MG. Constraint Logic Programming using ECLiPSe, Cambridge: 
Cambridge University Press; 2007. 
[52] Airbus320. A320 Airplane Characteristics for Airport Planning. Airbus, S.A.S; 2011. 
[53] Boeing. B737-Airplane Characteristics for Airport Planning. The Boeing Company; 2009. 
[54] Airbus319. A319 Airplane Characteristics for Airport Planning. Airbus, S.A.S; 2011. 
[55] Airbus321. A320 Airplane Characteristics for Airport Planning. Airbus, S.A.S; 2011. 
[56] Airbus330. A330 Airplane Characteristics for Airport Planning. Airbus, S.A.S; 2011. 
[57] Boeing767. B767-Airplane Characteristics for Airport Planning. The Boeing Company; 
2009 
[58] Boeing777. B777 -Airplane Characteristics for Airport Planning. The Boeing Company; 
2009 
[59] �:�R�F�K���0�����à�H�E�N�R�Z�V�N�L���3�����6�H�T�X�H�Q�W�L�D�O���6�L�P�X�O�D�W�H�G���$�Q�Q�H�D�O�L�Q�J���I�R�U���W�K�H���9�H�K�L�F�O�H���5�R�X�W�L�Q�J���3�U�R�E�O�H�P��
with Time Windows. Decision Making in Manufacturing and Services 2009; 1-2(3), 87-100. 
[60] Solomon Benchmarks. http://www.sintef.no/Projectweb/TOP/VRPTW/Solomon-
benchmark/100-customers/. Last update: 20/08/2013. 



32 
 

[61] Woch M. Rozwiazanie problemu dostaw z oknami czasowymi za pomoca symulowanego 
wyzarzania (Solving Vehicle Routing Problem with Time Windows Using Simulated 
Annealing). Studia Informatica 2004; 25(2), 67�±81. 
[62] Berger J, Barkaoui M, Bräysy O. A route-directed hybrid genetic approach for the vehicle 
routing problem with time windows. Information Systems of Operation Research 2003; 41 179�±
194. 
[63] Hong L. An improved LNS algorithm for real-time vehicle routing problem with time 
windows. Computers & Operations Research 2012; 39(2) 151-163. 
[64] Garcia-Najera A, Bullinaria, J.A. An improved multi-objective evolutionary algorithm for 
the vehicle routing problem with time windows. Computers & Operations Research 2011; 38(1) 
287�±300. 



In-Blocks
(IB)

Deboarding 
(DB)

Unloading 
Baggage (UL)

Potable water 
servicing (PW)

Cleaning 
(Cl)

Catering 
(Ca)

Toilet 
Servicing (TS)

Loading 
Baggage (L)

Fueling 
(F)

Boarding 
(B)

PushBack 
(PB)

Off-Blocks

Figure_1



                                    Global Problem
                                                    
                                         
                                                                            
                                                                               
                                                    

                                 
                                       

                                                     Sub-problems

TCLP

RLP1 RLP2 RLPn

...

...

¦
�

 
N i

if11F
11f 21f n1f

2F

Figure_2



Solving 
sequence

Obtain the initial  
time windows

Identify all the        
sub-problems 

Are all the sub-
problems solved? Exit

Update the time 
windows

N

Y
Routing a subproblem

Find an initial 
solution

Make a local 
search process

RLP

Select 
sub-problem 

TCLP

Figure_3



Exit

Y

Define kmax operators

N

x ←x'
k ←1

Y

N
If f(x') ≤ f(x)

k ←k+1

Initial solution x 

k ≤ kmax

Destroy xp←dk(x) 

Operator Ok

 (LNS)Repair x'←rk(xp) 

k ←1

Figure_4



DB

Cl (2)

F (4)

Ca (3)

B
IB

PB (7)

DB

Cl (2)

F (4)

Ca (3)

B

IB

PB(7)

DB Cl (2)

F (4)

Ca (3)

BIB

PB(7)

PW (5) TS (6)

PW (5) TS (6)

UL/L(1)

PW (5) TS (6)

UL/L(1)

UL/L(1)

a)

b) c)

Figure_5



a) b)

c)

DB

Cl (2)

F (4)

Ca (3)

B

IB

PB (7)

PW (5) TS (6)

UL/L (1)

d)

e) f)

DB

F (4)

Cl (2)

Ca (3)

B

IB

PB (7)

PW (5) TS (6)

UL/L (1)

DB Ca (3)

Cl (2)

F (4)

BIB

PB (7)

PW (5) TS (6)

UL/L (1)

DB

Cl (2)

F (4)

Ca (3)

B
IB

PB (7)

PW (5) TS (6)

UL/L (1)

DB

Ca (3)

Cl (2)

F (4)

B

IB

PW (5) TS (6)

DB

Ca (3)

Cl (2)

F (4)

B
IB

PB (7)

PW (5) TS (6)

UL/L (1)

UL/L (1)

PB (7)

Figure_6



●

●

●

●

●

●

●

●

1600 1800 2000 2200 2400
1540
1560
1580
1600
1620
1640
1660
1680
1700
1720
1740
1760
1780

C1J1

F1

F2

● non−dominated
dominated

1
23 4

5 6

7
8

9

10

11
12

Figure_7



●
●

●
●

●

●
●

2000 2500 3000 3500 4000

2300

2350

2400

2450

2500

2550

F1

F2
C1J2

●

●

●
●

●

●
●

●

2500 3000 3500 4000 4500

3000

3100

3200

3300

F1

F2

C1J3

●

●

●

●

●
●

●
●

●
●

●

1600 1800 2000 2200 2400 2600

1550

1600

1650

1700

1750

F1

F2

C2J1

●

●

●

●

●

●

●

●

●

1800 2200 2600 3000 3400 3800

2300

2350

2400

2450

2500

2550

F1

F2

C2J2

●

●

●
●

●
●

●

3000 3500 4000 4500 5000

3000

3100

3200

3300

F1

F2

C2J3

●
●

●

●

●
●

●
●

1800 2000 2200 2400 2600 2800

1550

1600

1650

1700

1750

F1

F2

C3J1

●
●

●

●

●
●

●

2500 3000 3500 4000

2300

2400

2500

2600

F1

F2

C3J2

●

●

●
●

●
●

●

●

3000 3400 3800 4200 4600

3000

3100

3200

3300

F1

F2

C3J3

Figure_8



●
●

●

●

●

●

●●

4000 4500 5000 5500 6000
2200

2400

2600

2800

F1

F2
C4J4

●

●
●

●

●

●

●

●

2000 2500 3000 3500 4000

1300

1400

1500

1600

1700

1800

F1

F2

C4J5

●●

●
●●

●

●

●

●

4500 5000 5500 6000 6500
2200

2400

2600

2800

F1

F2

C5J4

●

●

● ●

●

●

●

●

2400 2800 3200 3600 4000
1300

1400

1500

1600

1700

1800

F1

F2

C5J5

●

●

●
●

●

●

●

●

4500 5000 5500 6000 6500 7000

2200

2400

2600

2800

F1

F2

C6J4

●

● ●
●

●

●

●

●

2000 2500 3000 3500 4000

1300

1400

1500

1600

1700

1800

F1

F2

C6J5

Figure_9



Figure_10
Click here to download high resolution image

http://ees.elsevier.com/cor/download.aspx?id=203814&guid=a567da88-d86e-4187-a7e6-5a368ed25a21&scheme=1


Figure_11
Click here to download high resolution image

http://ees.elsevier.com/cor/download.aspx?id=203799&guid=b93989ad-b745-44e2-b7fb-b5966078748e&scheme=1


UL/L(1) Cl(2) Ca(3) F(4) PW(5) TS(6) PB(7)
1 2383 1594 (7,1,2,3,4,5,6) 19 12 12 10 4 8 4 1426.5
2 2165 1613 (6,7,1,2,3,4,5) 18 12 12 9 6 7 4 1263.07
3 1980 1621 (5,6,7,1,2,3,4) 18 11 11 9 4 7 4 1473.71
4 2425 1619 (6,5,7,4,3,2,1) 18 11 12 9 6 7 4 1545.45
5 1850 1655 (4,5,6,7,1,2,3) 18 11 11 9 4 7 4 1257.29
6 2154 1646 (6,5,4,7,3,2,1) 18 11 12 9 6 7 4 1308.99
7 1709 1695 (3,4,5,6,7,1,2) 18 11 11 9 4 7 4 1357.83
8 1998 1681 (6,5,3,4,7,2,1) 18 11 11 9 6 7 4 1471.98
9 1565 1715 (2,3,4,5,6,7,1) 18 10 11 9 4 7 4 1348.54
10 1816 1687 (6,5,3,4,2,7,1) 17 10 11 9 6 7 4 1285.05
11 1510 1736 (1,2,3,4,5,6,7) 16 10 11 9 4 7 5 1348.22
12 1792 1714 (6,5,3,4,2,1,7) 16 10 11 9 6 7 5 1360.61

Time(s)N. It. F1 F2 Sequence
# Vehicles

Table_1



F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2
1 2383* 1594* 3389* 2362* 4717* 3009* 2596* 1589* 3770* 2331* 4867* 2994* 2798* 1584* 3688* 2360* 4848* 3029*
2 2165* 1613* 4064* 2346* 4281* 3057* 2369* 1607* 3309* 2357* 4524* 3053* 2748* 1600* 4271* 2345* 4715* 3068*
3 1980* 1621* 3509 2403 4608 3067 2142* 1629* 3002* 2381* 4096* 3083* 2360* 1635* 3504* 2368* 4098* 3110*
4 2425 1619 2619* 2393* 3806* 3112* 2364* 1610* 3438* 2346* 4394 3104 2640* 1613* 3036* 2407* 4640* 3087*
5 1850* 1655* 2464* 2414* 3282* 3130* 1864* 1670* 2623* 2422* 3590* 3109* 2086* 1659* 3832 2403 3741* 3161*
6 2154 1646 3162 2399 4121* 3100* 2096* 1654* 2869* 2385* 3940 3153 2476 1639 2809* 2455* 4521 3133
7 1709* 1695* 2101* 2466* 3169* 3185* 1762* 1694* 2349* 2464* 3360* 3177* 1983* 1670* 3548 2447 3521* 3181*
8 1998 1681 2904 2464 3896 3173 1784* 1680* 2756 2444 3046* 3203* 2275 1662 2543* 2478* 4271 3186
9 1565* 1715* 1833* 2490* 2818* 3207* 1671* 1707* 2157* 2488* 3428 3215 1764* 1714* 2360 2517 3264* 3218*

10 1816* 1687* 2754 2486 3547 3197 1709* 1699* 2586 2486 2790* 3262* 2170 1692 3067 2514 3964 3200
11 1510* 1736* 1756* 2508* 2622* 3264* 1513* 1712* 1924* 2513* 3279 3286 1729* 1734* 2206* 2539* 3108* 3280*
12 1792 1714 2499 2509 3301 3252 1676 1710 - - - - 2054 1711 2863 2522 3690 3265

T.T.(s)

C3J2 C3J3

17.60518798.34

C2J3C2J2

18023.17 16375.34

C3J1
N. It.

C1J1 C1J2 C1J3 C2J1

16829.53 16254.9818112.82 18792.33 17971.83

Table_2



UL/L(1) Cl(2) Ca(3) F(4) PW(5) TS(6) PB(7)
1 4049 1359 [7,1,2,3,4,5,6] 11 7 7 6 2 4 2 1188.92
2 3577 1468 [5,7,1,2,3,4,6] 10 6 6 5 2 3 2 1333.95
3 3825 1449 [6,5,7,1,2,3,4] 10 6 6 5 4 3 2 1311.39
4 2999 1494 [5,6,7,2,4,1,3] 10 6 6 6 2 3 2 1331.87
5 2680 1595 [4,5,6,7,2,3,1] 9 6 6 5 2 3 2 1202.70
6 3252 1558 [6,5,4,7,2,3,1] 9 6 6 5 4 3 2 1339.12
7 2398 1681 [3,4,5,6,7,1,2] 8 6 6 5 2 3 2 1132.17
8 2928 1649 [6,5,3,4,7,1,2] 9 6 6 5 4 3 2 1290.72
9 2263 1715 [2,3,4,5,6,7,1] 8 6 6 5 2 3 2 1311.30

10 2846 1698 [6,3,2,5,4,7,1] 8 6 6 5 4 3 2 1116.89
11 2118 1754 [1,2,3,4,5,6,7] 8 6 6 5 2 3 2 1189.39

Time(s)N. It. F1 F2 Sequence
# Vehicles

Table_3



F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2
1 6300* 2276* 4049* 1359* 6658* 2276* 4271* 1369* 7239* 2248* 4269* 1363*
2 5975* 2319* 3577* 1468* 6587* 2274* 3767* 1450* 6574* 2322* 3849* 1446*
3 5840* 2424* 3825* 1449* 5772* 2429* 3226* 1486* 6356* 2416* 4078* 1440*
4 5307* 2484* 2999* 1494* 5648* 2448* 3464* 1478* 5618* 2457* 3266* 1459*
5 4942* 2595* 2680* 1595* 5319* 2458* 3204 1632 5009* 2572* 2882* 1524*
6 5684 2586 3252* 1558* 4826* 2632* 2988* 1552* 5863 2577 3556 1534
7 4608* 2736* 2398* 1681* 5306 2627 2730* 1666* 4784* 2682* 2696* 1630*
8 4200* 2833* 2928 1649 4524* 2693* 2611 1722 5639 2630 3196 1573
9 5012 2753 2263* 1715* 4469* 2801* 2553* 1709* 4739* 2776* 2363* 1683*
10 4100* 2838* 2846 1698 4249* 2857* 2560 1731 5261 2717 2998 1632
11 4875 2833 2118* 1754* 4768 2855 2418* 1745* 4487* 2843* 2133* 1753*
12 - - - - - - - - 5322 2830 2949 1736

T.T. (s)

C6J4 C6J5

18438.25 17201.87 18982.47 18564.34 17345.39 16902.98

N. It.
C4J4 C4J5 C5J4 C5J5

Table_4



Gap(%) Gap(%) Gap(%) Gap(%)

# Veh. TD # Veh. TD OS-BKS # Veh. TD OS-SA # Veh. TD OS-[61] # Veh. TD OS-[62]

C1 10.00 828.38 10.00 847.58 2.32 10.00 828.38 2.32 10.00 828.50 2.30 10.00 833.10 1.74
C2 3.00 589.86 3.00 606.25 2.78 3.00 589.86 2.78 3.00 590.06 2.74 3.00 590.31 2.70

RC1 11.50 1384.1612.88 1455.61 5.16 11.50 1384.38 5.15 11.88 1414.86 2.88 12.13 1369.57 6.28
RC2 3.25 1119.24 3.88 1295.75 15.77 3.25 1144.95 13.17 3.25 1258.15 2.99 3.75 1131.18 14.55
R1 11.92 1210.3412.66 1300.50 7.45 12.25 1203.37 8.07 12.2 1251.40 3.92 12.25 1218.28 6.75
R2 2.73 951.03 3.63 1117.54 17.51 2.91 962.51 16.11 2.73 1056.90 5.74 3.27 964.11 15.91

Hong [61]
Prob

BKS OS SA Berger et al.[60]

Table_5



#Vehicles Time (s) C(OS,SA) #Vehicles Time (s) C(SA,OS)
C1J1 9.41 16829.53 0.33 9.36 12580.97 0.13
C1J2 7.61 18023.17 0.16 7.42 15966.86 0.14
C1J3 6.54 16375.34 0.17 6.69 17460.36 0.38
C4J4 4.28 18438.25 0.33 4.22 18220.93 0.00
C4J5 4.9 17201.87 0.29 4.99 12836.44 0.37

Problem
OS SA

Table_6


