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Abstract

In the present paper, we propose a new approach for scheduling ground-handling vehicles,
tackling the problem with a global perspective. Preparing an aircraft for its next flight requires a
set of interrelated services involving different types of vehicles. Planning decisions concerning
each resource affect the scheduling of the other activities and the performance of the other
resources. Considering the different operations and vehicles instead of scheduling each resource
in isolation allows integrating decisions and contributing to the optimization of the overall
ground-handling process. This goal is defined through two objectives: (i) minimizing the
waiting time before an operation starts and the total reduction of corresponding time windows
and (ii) minimizing the total completion time of the turnarounds. We combine different
technologies and techniques to solve the problem efficiently. A new method to address this bi-
objective optimization problem is also proposed. The approach has been tested using real data
from two Spanish airports, thereby obtaining different solutions that represent a trade-off
between both objectives. Experimental results permit inferring interesting criteria on how to
optimize each resource, considering the effect on other operations. This outcome leads to more
robust global solutions and to savings in resources utilization.
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1. Introduction

The notable growth of air traffic in recent years has led to increasingly congested airports and
significant flights delays. In 2012, approximately 35% of European flights were more than 5
minutes late, with an average of 30 minutes [1]. A more collaborative coordination among all
the involved actors, such as airports, airlines, air traffic management, ground handlers, etc., and
a better planning of airport resources are crucial to improve the operational efficiency of the air
transportation system. Different efforts and important projects are currently being carried out to
achieve this goal, such as the Airport-Collaborative Decision Making (A-CDM) and the Single
European Sky ATM Research (SESAR) programs [2,3], which is particularly focused on Air
Traffic Management.

Regarding turnaround, the TITAN Project [4] proposes to improve the efficiency of airport
processes through sharing reliable and timely information among the concerned



actors. Turnaround is defined as the period of time the aircraft is on the ramp between an
inbound and outbound flight, and different ground-handling operations are performed. Ground
handling comprises the activities, operations procedures, equipment requirements, and
personnel necessary to prepare an aircraft for the next flight. Many aircraft delays can be
attributed to overlong turnarounds due to a lack of planning integration of the different activities
and an inefficient use of resources [5]. In addition, the ground tasks are very interdependent.
Each operation is a potential source of delays that could be easily propagated to other ground
operations and other airport processes [6,7].

Divisions of either airports or airlines have historically performed these operations. With the
recent process of deregulation of the ground-handling market at European airports, a notable
increase in the number of third-party companies has taken place [8]. This new scenario, with
several ground handlers providing multiple services, further increases the importance of
efficient scheduling of ground activities [9]. Due to the hierarchy of overall airport planning,
ground handlers are generally not included in the decision making of other scheduling processes
(flight scheduling, stand allocation, etc.). This means they must fit their planning around a set of
hard constraints. These constraints include aircraft arrival, departure, turnaround time, and stand
allocation, among others [10].

Thus, ground handling appears an interesting and open field for research and technology
transfer. In particular, logistics in ground handling [11] and cooperative planning decisions are
among the major challenges to improving the quality of ground-handling services. In this
context, the development of new tools that can help with the decision making process becomes
mandatory. We present a novel and efficient bi-objective approach to tackling the ground-
handling scheduling problem. To the best of our knowledge, this is the first time the problem is
treated as a whole in the literature. Thus far, other approaches have been developed to optimize
operations in isolation [9,12,13], but they do not consider the relationships and entanglements
among all the involved activities. In our approach, we do explicitly consider such relationships
and entanglements to solve the problem from a global perspective. To do so, we develop a bi-
objective optimization methodology and decompose the problem to apply efficient techniques.
Thus, we first solve a planning problem that leads to multiple Vehicle Routing Problem with
Time Windows (VRPTW) problems. These are solved individually, and decisions made on the
routing are propagated to the other VRPTWs through reductions in the available time windows.
This process provides a consistent method to solve the complete problem.

Ground-handling procedures are usually divided into two types: terminal and ramp. Terminal
activities are performed inside the terminal buildings and concern passenger services. Ramp
operations take place at the aircraft parking position between the time it arrives at the stand (In-
Blocks) and its departure (Off-Blocks). Figure 1 shows an example of the principal activities
during a typical turnaround when the aircraft is parked at a contact point (the stand is connected
to the terminal via a bridge).
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Figure 1. Example of activity flow during a turnaround at a contact point

Because the turnaround is a very complex process, its duration depends on many different
variables. These include operational variables related to the aircraft type (size, number of seats),
the number of tasks, parking position at a contact or remote stand, and the service time required
to carry them out (full servicing or minimum servicing). Some activities are affected by
precedence constraints imposed due to security issues, space requirements or airline policy; e.g.,
fueling cannot be performed simultaneously with deboarding/boarding. In some cases, the
precedence constraints can be violated; e.g., fueling and deboarding can be performed
simultaneously when a fire extinguisher is available. For hygienic reasons, the toilet and potable
water servicing (collect the waste and re-equip with fresh water) cannot be performed at the
same time, but either of the two can be performed first. The catering and cleaning processes
usually must be finished before boarding starts and, sometimes, they can begin only when
deboarding ends. The end of the turnaround process is determined by the Off-Block Time
(OBT), when all doors are closed, the bridge is removed, the pushback vehicle is present and the
aircraft is ready for startup and push back [6]. Although this operation might not be necessary
for aircraft parked at a remote position, pushing away the aircraft (pushback) is the most typical
method used for leaving the parking position. For that reason, we have defined pushback as the
last task of the ground-handling service in our problem.

Each operation is performed by a specific type of vehicle; therefore, different ground units or
vehicles are necessary. According to the task, some vehicles with a given capacity must
transport some quantity of resources to the aircraft stand (catering, fueling, or potable water
operations) or collect waste from the aircraft (also catering, lavatory services or cleaning tasks).
Likewise, some vehicles do not transport any resource (pushback, baggage loader or the fuel
dispenser by underground pipelines). To simplify the model according to the goal of this work,
we made some assumptions about the turnaround operations. We selected the main activities of
a full servicing turnaround on aircraft parking at a contact point. In addition, we have not
considered baggage transportation. Baggage transportation has special features in relation to
other ground-handling activities; i.e., more than one trip is needed to carry all of the bags, more
than one baggage facility can be used, etcetera. It requires a specific model and solution method
and is an important field for future research.



At each aircraft, the operations must be performed within the defined turnaround time. Hence, a
time window to begin the service is assigned to each activity that considers the duration of each
task and the precedence constraints. Ground-handling vehicles must visit the stand where the
aircraft is parked in the given time window, perform the operations during a determined service
time, and travel to the next stands to perform their next activities.

Scheduling decisions made for one service affect other activities. Tasks belonging to the same
aircraft are related according to the precedence restrictions, as well as to their corresponding
time windows. The time when an operation begins thus could reduce the time windows of the
other activities, depending on these restrictions, and consequently the performance of the
vehicles servicing them. Optimizing each resource while considering the effect on other
operations permits an integration of planning decisions and contributes to optimizing the overall
ground service process. For instance, scheduling the vehicles to complete the tasks as closely as
possible to the start of their time window leaves some room to address unexpected events or
delays. This is conductive to a more robust global solution, that is, while the operations begin at
their corresponding original time windows, a reschedule is avoided.

Solving this problem consists of obtaining a schedule for the ground-handling vehicles that
service the aircraft performing turnaround during one working day. The schedule must satisfy
temporal, precedence, and capacity constraints. We aim to minimize the operation waiting time,
i.e., accomplishing each operation as early as possible in relation to its original time window,
PLQLPL]LQJ WKH WRWDO UHGXFWLRQ RI WKH WLPH ZLQGRZV DC
This leads to a second objective: to minimize the total completion time of the ground services at
each aircraft. That is, we want to balance robustness of scheduling each operation with good
performance of the turnaround, using the vehicles efficiently. In addition, we focus on solving
the problem at a tactical level. This means that vehicles are scheduled using estimated flight
arrival and departures times, predicted duration of operations and a planned gate assignment. In
this sense, we are concerned with developing a flexible algorithm that can obtain good solutions
with a reasonable computational effort.

Operational planning and resource allocation in ground-handling companies are conditioned by
prior mid-term decisions, usually made one month ahead, and by external changes on the day of
operation. In the mid-term planning, ground handlers work based on flight schedules, aircraft
types to be serviced and, perhaps, expected airport resources. Using this information, the
handling equipment is allocated according to the planned workload. This quite often leads to an
inefficient use of resources and being in an uncomfortable position to address unexpected
events. By employing an optimization process as in the proposed approach, ground handlers can
improve the utilization of their equipment while reducing costs. Moreover, we aim with this
approach to increase the robustness of the operational plan for the equipment allocated in the
mid-term planning. Robust solutions are crucial on the operation day to performing the
turnaround within very tight time windows. Short delays caused by late start of a turnaround,
perturbations during operations or ground-handler underperformance can be absorbed.
Otherwise, departure delays can be produced, which turn into economic penalties.

Different activities and type of vehicles, each of them with their own available fleet, are then
considered to study the ground-handling problem from a global perspective. Scheduling these
vehicles to perform the services at different aircraft could be modeled as a VRPTW [14]. The
ground-handling problem is separated using a decomposition schema inspired by the
workcenter-based decomposition for Job Shop Scheduling [15], and one VRPTW is identified
for each type of vehicle. The well-known Insertion Heuristics method [16] and a hybrid
methodology [17] were used to solve each VRPTW sub-problem. In this methodology,
Constraint Programming (CP) was combined with Large Neighborhood Search (LNS) and
Variable Neighborhood Descent (VND). To address the bi-objective problem, a new method we
call Sequence Iterative Method (SIM) has been developed. Modifying the order in which the



sub-problems are solved yields a range of solutions representing the best compromise between
the two objectives.

The remainder of this article is organized as follows. In Section 2, the previous work related to
vehicle scheduling in ground handling, the VRPTW and multi-objective optimization are
reviewed. The decomposition approach used and the problem formulation are described in
Section 3. Then, the proposed solution method and the method to address the bi-objective
problem is presented in Section 4. Next, computational results are presented and discussed in
Section 5. Finally, conclusions and future research lines are provided in Section 6.

2. Previous Studies
2.1 Ground-handling vehicle scheduling

Vehicle scheduling in the ground-handling process has received less attention than other airport
resources; few works can be found in the literature. Moreover, most of the examples found are
focused on one type of resource. To the best of our knowledge, none of these works examine the
scheduling of ground-handling vehicles as a whole.

Regarding ramp operations, Du et al. [12] proposed a model to schedule fueling vehicles based
on the Vehicle Routing Problem with Tight Time Windows (VRPTTW) with multiple
objectives. They considered minimization of the number of vehicles, the start time of the
service, and the total servicing time of the trucks, following this order of importance. An
improved Ant Colony algorithm is presented to address the multi-objective problem. Clausen
[9] focused on connecting baggage transportation and proposed a greedy algorithm based on an
Integer Programming model for the Vehicle Routing Problem with Time Windows (VRPTW).
Norin et al. [7] proposed an interesting integration of a simulation model of various operations
during turnaround and the scheduling of de-icing trucks obtained by a greedy optimization
algorithm. Minimizing the delays as well as the traveling time of the trucks are the objectives
defined. A more sophisticated solution was proposed by Ho & Leung [13] to tackle airline
catering operations including staff workload. They presented a comparison between Tabu
Search and Simulated Annealing approaches to solve the problem.

2.2 VRPTW and the Multi-objective problem

The Vehicle Routing Problem (VRP) is one of the most popular combinatorial optimization
problems. It is aimed at determining an optimal set of routes for an available fleet of vehicles to
service a set of customers, subject to different constraints. The VRPTW is an extension of the
VRP in which each customer has a time window within which the vehicle must begin its task.
The VRPTW has been extensively studied, and several formulations and exact algorithms have
been proposed [18]. Solving this combinatorial optimization problem is NP-hard [19]; the use of
heuristic algorithms [20], metaheuristics [21] and, recently, hybridization methods [22] has been
a very important field of research.

Many real-world optimization problems, including the VRPTW, involve more than one
objective to be either minimized or maximized. The field of multi-objective optimization is
drawing growing interest among researchers, particularly in VRPTW problems. To minimize
the number of vehicles and the traveling distance, Gambardella et al. [23] implemented one of
the more used methods: establishing a hierarchy between the objectives. In [12], a similar
approach is used to solve a multi-objective model for scheduling fueling vehicles. Tan et al. [24]
made a direct interpretation of the multi-objective problem using the concept of Pareto
Optimality [25] in a hybrid multi-objective evolutionary algorithm (HMOEA), as did Ombuki et
al. [26] with a genetic algorithm. A goal-programming model is proposed by Ghoseiri & Farid
[27] in which the aspirations levels to the objectives and theirs deviations are minimized. Liu et
al. [28] proposed a multi-objective heuristic in three phases to balance the workload, delivery



time and traveling distance among the vehicles. Hong & Park [29] also used a goal-
programming model to minimize total vehicle travel time and total customer waiting time. In a
soft time window context, Miiller [30] used the Gconstraint method to minimize the total cost
and the penalties associated with violations of the time windows. Here, one of the objective
functions is optimized and the other is converted into a constraint. For further examples and
algorithms, an overview of the research in this area is presented in [31].

Usually, there is not a single solution optimizing all objectives simultaneously. Instead, different
solutions can be found with a trade-off among the different objectives. The concept of
domination or Pareto Optimality is used to determine this set of optimal solutions. It is said that
a solution x dominates another y if and only if x is better than y in at least one objective and not
worse in the other ones. That is, a solution is Pareto optimal if there is no other one that
improves at least one objective function without sacrificing the others. Therefore, the obtained
set of non-dominated points determines the Pareto optimal solutions of the multi-objective
problem. A more formal definition of multi-objective problems and dominance is presented in
[25].

Methods to address Multi-Objective Problems (MOP) can be classified according to the role of
the decision maker in the decision process [32]. The more common classes are a priori, a
posteriori, and interactive methods. The a priori approach uses specific information about the
relevance of the objectives and user preferences before the solution process. As a result, one
solution is found according to these preferences. In the a posteriori schema, a set of Pareto
optimal solutions is generated and the preference information of each objective is used to select
the most satisfactory one. Finally, in the interactive methods, the preference information is
updated during the solution process.

Different examples of methods classified as described above can be found in the literature, each
having strengths and weaknesses. A good summary is presented in [32,33]. The advantage of
the a priori approach is that it can produce a single compromise solution without requiring
further participation of the decision maker. One of the methods more widely used due to its
simplicity is the weighted method. Specifically, it is used in the mentioned de-icing trucks
scheduling [7]. It involves aggregating all the objectives into one composite function with
different weights that are used to indicate the relative importance among the criteria. However,
there are problems in which expressing the preferences through values or correlate different
objectives in the same function could yield inaccurate solutions [32,34].

In our particular case, tackling the vehicle-scheduling problem as a bi-objective problem
contributes to the global approach of the ground-handling problem, although it is not easy to
define the relationships and the importance among the objectives. The first criterion addresses
the VRPTW problem for minimizing the total customer waiting time. However, this leads to
more vehicles being involved. Although minimizing the number of vehicles is not an explicit
optimization objective, it should be considered to solve the problem. Having waiting time on the
preceding operation does not always imply that successive operations could not be started at the
earliest point of their time windows. For instance, let there be two tasks with different durations,
which must be finished before a third one. The task with the shorter service time will end
earlier, but the third operation might need to wait for the second task anyway. Hence, it is
possible to use the vehicles more efficiently, allowing waiting time on the first activity without
affecting the completion time of the overall performance. The second objective is focused on
the turnaround process. It is important to perform each operation as early as possible to
minimize the completion time of the turnaround. On the other hand, minimizing the completion
time leads to a reduction of the time windows of the operations on the same aircraft and thus
increases the number of vehicles needed. For that reason, obtaining a set of solutions with a
trade-off between the objectives yields the possibility of selecting the one that better suits the
problem.



3. Problem Decomposition and Formulation

The decomposition schema used in this work is inspired by the workcenter-based
decomposition for the Job Shop scheduling problem [15]. A workcenter is a group of machines
performing similar operations. In this approach, the overall problem is broken down into
workcenter-based sub-problems, and they are solved independently. The operations of a sub-
problem are related to other sub-problem operations by the precedence restrictions. Each time a
sub-problem is scheduled, new constraints for the other operations are generated. Therefore, a
method that integrates the sub-solutions and keeps the consistency of the overall solution is
needed.

In our problem, each type of vehicle can be viewed as a workcenter, and the vehicles available
in the fleet as the machines. Additionally, each task must be performed by just one type of
vehicle. Therefore, instead of solving a global VRPTW, it is possible to solve local VRPTWs
for each type of vehicle. In addition, scheduling each type of vehicle separately permits the
development of specific methods to tackle special features according to the operation they
perform. On the other hand, the temporal restrictions on performing each operation due to the
defined turnaround time and the precedence constraints must be tackled globally. This ensures
that the local solutions can be integrated to obtain a complete solution. The decomposition
schema is shown in Figure 2. A procedure we called Temporal Constraints Level Procedure
(TCLP) was defined to satisfy the temporal restrictions. For each type of vehicle, a VRPTW is
modeled using the defined Routing Level Procedure (RLP). F1 and F2 are the defined
optimization objectives.

Global Problem

TCLP F2

Sub-problems |

RLP1 RLP2 . RLPn

v
11, fLoo f1 FLOA

i*N

Figure 2. The problem decomposition schema

The main features of this algorithm are modeled and implemented in Constraint Programming
(CP). CP is a very attractive paradigm due to its expressiveness for modeling problems with
side constraints. It has received much attention in recent decades due to its potential for solving
real-world combinatorial optimization problems [35]. These applications often involve a
heterogeneous set of side constraints and, typically, they must address frequent update/addition
of constraints [36]. The flexibility of CP is thus a powerful characteristic because adding
constraints is a modeling issue and does not affect the search process. In CP, problems are
expressed by means of three elements: variables, their corresponding domains, and the
constraints relating these variables. Solving a problem involves the assignment of values to the
variables that satisfy all the constraints. This class of problems is usually termed Constraint
Satisfaction Problems (CSP), and the core mechanism used in solving them is constraint
propagation [37]. It involves deleting from variable domains values that cannot satisfy the
problem constraints. When a value is assigned to a variable, it is propagated through the
associated constraints to the rest of the variables involved in these constraints. If there are values



in other variable domains that are incompatible with propagated assignments, they are also
removed [36]. Through constraint propagation, unfeasible alternatives are eliminated in
advance, reducing the exploration of the search space.

The parameters of the ground-handling problem are described as follow. Let A be\fiie
set of tasks to be carried out on the aircraft at its parking position. N= {1,..., n} is the set of
scheduled aircraft performing a turnaround, and Uis the set of aircraft types. Each task i ¢
according to aircraft type a * Uhas a duration /,, a requirement for goods !, and precedence
restriction rules ;,, which represent the set of tasks that must be finished before task i can start
on aircraft type a. Each task must be performed by one type of vehicle. The set of types of
vehicle is described by VT and each vz ¢ VT has its own homogeneous fleet M,,={1..m,,} with

capacity Q,,.

For each aircraft j » N, the STA;and STD,; are the scheduled arrival and departure times,

respectively. The aircraft type is a;* U and ;¢ +is the stand where the aircraft is parked during

the turnaround. +istKH VHW RI SDUNLQ &, 5 R ¥thdAtdvRifk\¢ost Be@veen E
VWDQGY DQG EHWZHHQ WKHP DQG WKH YHKLFOH GHSRW &

There are O= T uN operations to be performed by the vehicles from V7. An operation o; is a
task i ¢ performed at an aircraft j ¢ N according to a; * A, the aircraft type of j.

3.1 Temporal Constraint Level Procedure (TCLP)

In this level, the earliest and latest start times for each operation are obtained. Let the variable 2
be the start time of each operation o; with a discretized initial domain 2: [STA;..STD;]. The
precedence restrictions are described by the following constraint:

wt w G"i ii'e T/i'e Sajr N 11 ! ! ! ! R )

Equation (1) ensures that temporal relationships among the tasks are fulfilled according to the

type of aircraft to which they belong. When this restriction is propagated, the domain of the start

time variable of each operation is reduced such that: 2:: [est;;..Ist;], where est and Ist are the

lower and upper bounds of 2DQG UHSUHVHQW WKH RSHUDWLRQYY HDUOLHV\
respectively. During the operation scheduling process, these time windows are modified due to

the precedence restrictions. Note that the duration of the last operation, i.e., pushback, is not

included. As mentioned, the end of the turnaround is defined as the start time of the pushback.

Because the vehicles are routed separately, an explicit update process of the time windows is
required to avoid inconsistency among sub-problems. Suppose two operations on the same
aircraft, o;; and o,; such that o;; must be finished before o,; could start, thatis, W t W G,.

The difference between est;; and est,; is the duration ofo;;, as well as between Ist;; and Ist,;.
Suppose also that the type of vehicle which performs o;; is routed first and o;; is scheduled such
that W !est;; The value ofest,; isnow W G,. Then, the time window ofo,; must be reduced.
Otherwise, when the type of vehicle associated with o,; is routed with the original time

window, an infeasible solution might be obtained. Note that both the earliest and the latest start
time could be reduced. For example, ifo,; is solved first, the Ist;; willbe Yf G, . The strategy

followed to update the time windows and ensure the consistency of the solutions is further
explained in Section 4.

3.2 Routing Level Procedure (RLP)

When the time windows for each operation are calculated, a sub-problem is identified for each
vt * VT. We obtain the set of operations to be performed by each vz, O,={0;,..,0,}, as well as the



duration d, and the requirements for goods r, for each o *O,, according to the task and the
aircraft type where the operation takes place. Because each routing problem is solved separately
and to simplify the notation, we identify set O,,as O={I,..,n}. The CP model corresponding to
each VRPTW sub-problem is based on the formulation presented in [38].

Let V=0 %F %L be the set of visits to be performed where set O= {,..,n}represents the
operations, i.e., the aircraft to be serviced. Two special visits describe the depot from which the
vehicles start and finish their routes and are modeled by sets F= {n+1,...,n+m} and L=

{Q P w+2m}, respectively. m is the number of vehicles needed for all the operations to be
accomplished by fleet M= { « P}. Note that m is a parameter in our model. The visits fi= n+k,
fi*Fand [,= n+m+k, [, » L represent the first and last visit of the vehicle k *M, respectively.

The following variables are defined:
xv; B e V: the vehicle which perform each visit i with domain v :: [1..m]
xp; B o V4 the direct predecessor of a visit i with domain p :: [1..n+m]
xs; B ¢ V 4: the direct successor of a visit i with domain s :: [1..n,n+m+1..n+2m]
xt; B * V:the time when the visit i is performed with domain ¢:: [est;..Ist;]. Notice the est
and Ist values are those obtained from the TCLP procedure
Xg; B * V: the cumulated capacity after each visit i with domain ¢ :: [0..0]

As mentioned, one of the optimization goals is accomplishing the operations as early as
possible. Therefore, the objective function aims at minimizing the total difference between the
earliest possible time a vehicle could perform each visit and the corresponding earliest service
time. Let w;=t;-est; be this difference, that is, the client waiting time. The routing problem is
then formulated as follows:

min | w; ()
ioN

Subject to

vi vy iV F/ / / ! / ! / ! ! 1(3)
vi vy ieV L/ ! / ! / ! ! ! ! 1(4)
v vy keM ! ! / ! / ! ! ! ! 1(5)
pi zp; LjeV F & j! / ! / ! n mn ! 1(6)
sizs; ijeV LS j! / ! / ! / / ! H7)
Sp, i iV F/ ! / ! / ! / ! / (8)
py i iV L/ ! / ! / ! / ! 74 9)
titt, S d, ieV LI/ ! / ! / n / (10)
nod, G dy iV F/ / ! / ! ! / " (11
4 qp o iV FI [ / ! / ! / n / (12)
4 gy ry iV LI/ / ! / ! ! N/ / (13)

Constraints (3) and (4) ensure a visit, its predecessor and successor, are assigned to the same
vehicle, as well as the first and last visit of this vehicle with constraint (5). Inequalities (6) and
(7) restrict a visit to have one and only one predecessor and successor, whereas constraints (8)
and (9) keep the coherence between the successor and predecessor. To ensure the temporal
precedence in a route, constraints (10) and (11) specify that the time to visit a client is at least
(at most) the time to visit its predecessor (successor) plus (minus) the sum of traveling time and
the duration of the service. Constraints (12) and (13) were defined to address the capacity
restrictions of the vehicles. The goods picked up or delivered in the route are counted to keep
the load along the route.



3.3 Decomposition bi-objective problem

To obtain a more robust scheduling, the operations should be performed as early as possible
within their original time windows. Because of the decomposition, the operation waiting time is
calculated by the RLP with the updated time window (if it is reduced). If the size of the time
window becomes smaller, most likely the waiting time would also be smaller, although it does
not contribute to the solution robustness. Additionally, this reduction could lead to an increase
in the vehicles needed.

Therefore, our first objective aims at performing operations as soon as possible through two
arguments: minimizing the total operation waiting time and the total reduction of the time
windows. Le W;=(oest;-est;)+(olst-Ist;), where oest; and olst; mean the original values of the time
windows obtained from the TCLP, i.c., the very earliest and latest start times for each operation.
w; is the client waiting time set in Section 3.2. An aggregate function f/ is defined to describe
how early the operations are performed in each routing problem:

fL, ow vt « VT (14)
i*N
The first objective F/ is defined as:
min | fI, (15)
vt VT

Let [ be the last operation on each aircraft and Zhe start time of operations defined in Section
3.1; the second objective F2 of this problem is:

min | W (16)

JoN
The objective function F2 minimizes the completion time in all aircraft.

4. Solution Method

In this section, we describe a new bi-objective algorithm developed for solving the ground-
handling problem. This method is based on a workcenter-based decomposition strategy [15].

Most workcenter-based decomposition methods are derived from the Shifting Bottleneck
procedure [15] developed by Adams et al. [39] and later improved by Balas et al. [40]. This
decomposition heuristic was originally implemented for the classical job shop-scheduling
problem and then extended to model other versions such as sequence-dependent times and
workcenter problems, also called the parallel machine problem. At each round, a critical
unscheduled sub-problem according to the optimization criterion is identified and solved as a
one-machine (or workcenter) scheduling problem. Using this result, each sub-problem solved in
the previous iterations is re-optimized by solving again a one-machine problem, whereas the
machines already scheduled remain fixed. This re-optimizing cycle is repeated a number of
times, modifying the order in which the machines are solved.

The Shifting Bottleneck is computationally intensive and involves solving many single
machine-scheduling problems [41]. Applying this procedure in our particular case, where each
sub-problem is a VRPTW, can lead to long execution times; the problem becomes impractical
to solve. Thus, we followed a similar schema but combined two processes to obtain a complete
solution at each iteration. In the first process, which we call Solving Process, all sub-problems
are solved one after another given a predefined order. Each time a sub-problem is solved, the
time windows of the remaining sub-problems are updated to maintain consistency among the
sub-solutions. The Solving Process is embedded in an iterative schema that we call Sequence
Iterative Method (SIM). The goal of this second process is to improve the overall solution when
dealing with the defined bi-objective optimization problem. The sequence for solving the sub-
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problems is modified at each iteration according to the solution obtained, and the Solving
Process is repeated with the new sequence.

4.1 Solving Process

In the Solving Process, sub-problems are identified and solved according to a given sequence. A
schema of this process is shown in Figure 3. First, the TCLP implemented using CP is used to
find the time windows of each operation. Then, a sub-problem is identified for each type of
vehicle and a routing problem is solved by means of the RLP.

Solving
sequence

Y

Obtain the initial
time windows TCLP

A

Y

Identify all the
sub-problems

< Update the time |4
windows

Select

sub-problem Are all the sub- .
. Exit
problems solved?
4 Y
Routing a subproblem
Find an initial .| Make alocal
solution search process
RLP

Figure 3. Flow diagram for the Solving Process

The RLP procedure was developed in two stages. At the first stage, a well-known route
construction heuristic is used to obtain a reasonably good initial solution (see Section 4.2). The
number of vehicles obtained in this step is taken as an upper bound of the vehicles needed to
perform the operations. Imposing this value as the size of the available fleet, a CP local search
process is applied in the second stage to improve the initial solution. With this heuristic, we
assume that there are sufficient resources to handle the airport workload. The CP methodology
is described in Section 4.3. The aim of this step is to improve the initial solution by minimizing
the operation waiting time, f1.

After solving a sub-problem, an explicit process to update the time windows is needed to ensure
consistency with the rest of the sub-problems, as explained in Section 3.1. Once again, taking
advantage of the propagation of CP through the TCLP, a simple strategy is applied to maintain
consistency. Finally, when all sub-problems are solved, the process is stopped. Algorithm 1
describes the proposed Solving Process.

1.SetSF m /

2. Obtain the initial time windows by means of TCLP
3. Sub-problems solution by means of the RLP
3.1 Repeat until |SF/=/VTI

a. Choose s;*S
b. Obtain an initial solution for s; using the 13 Insertion Heuristic
c. Apply the CP-based local search process
d. Set SF mSF %{s;}
e. Update the time windows of the sub-problems in S\SF by means of the TCLP

Algorithm 1. Solving Process
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Let Sbe the set of routing sub-problems to be solved, where /S/=/VT| and SF is the set of sub-
problems already solved SF ZS. To ensure coherence among sub-solutions, each time a sub-
problem is solved, the scheduled decisions are propagated to the rest of the sub-problems not
yet solved, keeping the already-scheduled sub-problems fixed. First, no sub-problem has been
solved. The very earliest and latest start time of each operation is obtained by means of the
TCLP. When a sub-problem is scheduled, the start times of the operations belonging to this sub-
problem are calculated. Afterwards, the TCLP is recalled with the start times of the sub-
problems already solved. These values are propagated to the operations of the unscheduled sub-
problems, and their time windows are updated. This process is repeated for each sub-problem,
always keeping the preceding scheduling decisions. Infeasible intermediate solutions are
avoided using this strategy. Note that time window reductions depend on the order in which
sub-problems are solved and affect the quality of the global solution. In fact, in the
decomposition procedures based on Shifting Bottleneck, determining the next machine to be
scheduled is one of the more important steps. According to [15], the sequence in which the
machines are included in the partial schedule can reduce the re-optimization process without
loss in solution quality. Then, the proposed iterative process (see Section 4.4) is developed,
aiming at improving the solution by modifying the order in which sub-problems are solved.

4.2 Initial solution

The initial solution of each routing problem is obtained using the Insertion Heuristic method
[16]. Solomon proposed three variants (I1, 12 and I3), each using a different criterion to select
customers to be inserted in a route. Moreover, a set of parameters was defined that permits
adjusting the solution method to solve different problems. In particular, we used the third
heuristic (I3).

It is known [ 16, 20] that I1 yields the best results, particularly for traveling distance, which is a
critical decision rule in this case. Nevertheless, in our problem, we aim to minimize the
operation waiting time without compromising the number of vehicles required. Hence, the route
construction should be guided by both geographical and time criteria with similar importance.
In I3, the combination of the additional distance and time required to visit a customer is used to
decide the best insertion place and the client to be inserted. Note that in this case, I1 and 13 are

HTXLYDOHQW XVLQJ WKH IRO OR ZL;&0) f& IBUHWektiVaHhitd/
parameter is included in I3 to assign priority to a client having the lowest deadline to begin the
service. Among other aspects, this parameter contributes to reducing the vehicle waiting time
which, in turn, can lead to reducing the number of vehicles required. Thus, we have decided that
I3 is the most appropriate heuristic to obtain an initial solution for our problem.

4.3 Local search process

A hybrid methodology based on [17] was selected to improve the initial solution found with I3.
In this methodology, the modeling and the constraint propagation advantages of CP were
combined with local search methods. Using the concept of operators based on Large
Neighborhood Search (LNS) [42], the local search process is embedded in CP. These operators
destroy and repair the solution to re-optimize parts of the problem. Destroy in this case means
identifying a set of customers to remove from a solution. Repair refers to finding a better
method to reinsert these customers into the partial solution. In addition, the methodology
employs Variable Neighborhood Search (VNS) as a metaheuristic to guide the search. VNS was
introduced by Hansen and Mladenovic [44] and has been applied to solve different variants of
the VRP with interesting results [21,43,45,46]. Specifically, the Variable Neighborhood Descent
(VND) [47] method has been adopted. A generic representation of this methodology is depicted
in Figure 4.
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Employing LNS within VND permits systematic exploration of the search space. Using VND,
the algorithm moves from one operator to the next to escape from local minima. Any time an
improved solution is found, the process is reset to the first operator; otherwise, the algorithm
changes to the next operator.

‘ Initial solution x

Define ki, operators

N” Kinax
/

Y

Destroy X, 8 di(x)

Operator Ok
Repair x' 8 Wx,) (LNS)

) 4

IfF(x) " (x)

Figure 4 Flow diagram of the VND schema using LNS operators

Two operators have been used for solving our problem: the Random Pivot OPerator (RPOP)
[17] and the SMAIl RouTing (SMART) [43]. According to Rousseau et al. [43], the
neighborhood structure defined by used operators should be different to succeed with the VND.
In RPOP, individual customers are removed and re-inserted, whereas SMART works with arc
exchanges.

In RPOP, the destroy method consists of randomly selecting a pivot customer, which is
removed from the solution. Then, a set of the nearest customers according to their geographic
proximity is also removed, forming a hole around the pivot [17]. Two key aspects should be
considered when implementing the destroy methods in operators: (i) how to select customers,
and (ii) how many, i.e., the size of the neighborhood. Concerning the first point, a typical
strategy is removing clients that are related according to some criteria, i.e., geographic
proximity. As for the second consideration, small neighborhoods are usually preferred to large
ones due to computational time limitations. In our particular problem, different operations
(clients) can have the same parking position due to the length of the schedule time horizon.
Hence, establishing temporal criteria seems more suitable to remove visits than using
geographical rules. In the ground-handling problem, the time windows to accomplish the
operations are generally tight, particularly when the activities have precedence restrictions.
Therefore, we have defined the closeness of the time windows as the proximity metric of the
RPOP. Regarding the number of clients, the RPOP operator is defined such that the number of
visits removed is gradually increased each time the search becomes trapped in a local minimum.
One single pivot is again selected when an improvement is found. An upper limit on the number
of pivots is defined to avoid exploring too-large neighborhoods.

In the SMART operator, sequences of arcs in different routes are removed instead of customers.

First, a random primary pivot is identified and a certain number of clients after and before the
pivot are disconnected, making a hole in its route. Then, a set of secondary pivots is selected,
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that is, the one customer in each other route that can be visited in that hole while making a
minimal detour. The same process is applied several times, and a number of precedent and
successive customers are removed.

A CP-based Branch and Bound (BB) procedure is employed as the repairing method in the
RPOP operator. Constraint propagation provides efficiency to this pruning of the search tree
each time the upper bound is updated when a better solution is found. Additionally, the
combination of VND and LNS plays an important role because different neighborhoods can be
explored and revisited iteratively with improved upper bounds [17]. Because this process is
exact, a limited execution time is established to avoid excessive computational time. In the case
of the SMART, Limited Discrepancy Search (LDS) is used in the CP-BB procedure for repairing
the solution as suggested Rousseau et al. [43]. The SMART operator is more likely to produce
large neighborhoods than is the RPOP. With LDS, large search spaces can be explored more
quickly without notably compromising the quality of the solution.

4 4 Sequence Iterative Method (SIM)

As explained in Section 2.2, we define the ground-handling problem as a Multi-objective
Optimization Problem (MOP), in particular, as a bi-criteria optimization problem. The first
criterion relates to the quality of the local routing decisions and depends on the contraction of
the time windows during the process. The second criterion can be observed as a global
objective: minimizing the completion time of turnarounds. The iterative process was
implemented to re-optimize the global solution due to the decomposition regarding the two
defined objectives.

Using a posteriori methods, the solution of the MOP is the set of non-dominated solutions, also
called the Pareto optimal set. Depending on the problem, obtaining all Pareto optimal solutions
is not guaranteed or can take high computational times [32,49]. Heuristic approaches, local
search methods, metaheuristics, and evolutionary algorithms find approximations to the Pareto
optimal set [50]. A definition of this approximation is also presented in the mentioned work: a
solution y obtained by an algorithm A is Pareto optimal relative to A if A does not find another
solution z such that z dominates y. In general, heuristic methods must be developed with two
important principles: (i) find non-dominated points as close as possible to the optimal set and
(i1) find solutions sufficiently diverse to provide a good coverage of this set [50].

Many methods such as the weighted method, Oconstraint, and goal programming among others
solve the MOP by scalarization [31,32,49], i.e., transforming the problem into a single objective
or a set of single objective problems. This strategy employs efficient and already tested single-
objective algorithms existing in the literature and applies them to solve the MOP. With the goals
of more directly addressing the MOP and of finding a set of non-dominated points, these basic
scalars, usually a priori methods, can be used as a posteriori approaches modifying the
parameters. The Oconstraint procedure is commonly used with this approach. The problem is
solved with respect to one objective and, at each iteration, the value of the second objective
obtained is used as a constraint to limit the search space [30,32,49].

Following this scalarization schema, we developed SIM to find the potential non-dominated
solutions for our problem. The problem is solved with respect to the first objective, and the
value of the second objective is calculated from the obtained solution. At each round, the
sequence for solving the sub-problems is modified to find a solution in the Pareto set to cover it
in the best possible way. Regardless of the type of aircraft, the ground-handling service always
finishes by pushing away the aircraft from its parking position (pushback). We used this
information to create an initial sequence to obtain a lower bound of F2. The sub-problems are
ordered and solved such that a promising search space will be explored to improve F/ while a
new value for the second objective is obtained. This method is described in Algorithm 2.
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Definition S: set of sub-problems where /S/=/VT/, s,,.last operation, BL: sub-problems to solve before s,
SR: remainder of the sub-problems, SSol: set of solutions found,
1 SSol m /
2 SR msort SR by the values that were assigned to identify the sub-problems

Step A. Initial solution

Initial sequence to obtain a lower bound of F2
3 BLm /
4 S m{s,} %SR
5 <F1,F2> mSolvingProcess(S)
Sequence to improve FI keeping the position of s,

6 repeat
7 SR' msort SR by fI,; in a decreasing order
8 S'' M{s;,} %SR'
9 <FI'F2'> MSolvingProcess(S')
10 if (F1'<F1I) then
11 SR MSR'
12 S ms'
13 fl,, mfl,,' vteVI
14 FI mFI'
15 F2 mF2'
16 end if
17 until F/ is not improved
18 SSol M<FI1,F2>

Step B. Set of solutions to improve F/ planning the rest of sub-problems before s,
19 repeat
20 b Mmax,, .5z {f1.:}
21 BL m{b} % BL
22 SR MSR\{b}
23 S MBL %{s;,} %SR
24 <FI1,F2> MmSolvingProcess(S)
25 SSol M<FI1,F2> %SSol
26 repeat
27 SR' msort SR by fI,,in a decreasing order
28 BL' msort BL by f1,;in a decreasing order
29 S'MBL' %{s,,} %SR'
30 <FI'F2'> MSolvingProcess(S')
31 if (F1'<FI) then
32 SR mSR'
33 BL mBL'
34 S ms'
35 fl,, mfl," vt VIl
36 FI mrI'
37 F2 mF2'
38 else if (F2'<F2) then
39 SSol M<FI'F2'> %SSol
40 end if
41 until F/ is not improved
42 until |BL/=/S\{s;,}/
43 return SSol

Algorithm 2. Sequence Iterative Method (SIM)

Let Sbe the set of sub-problems where each sub-problem corresponds to each type of vehicle
involved, /S/=/VT/. Each sub-problem or type of vehicle has been identified with an integer (see
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Figure 5). The order in S describes the sequence in which the sub-problems are solved; sy, is the
sub-problem corresponding to the last operation, pushback (PB) in this case; BL is the set of
sub-problems to solve before s,, such that BL ZS\{s,,}, and SR represents the remainder of the

sub-problems such that SR=S  {s,,} BL.

In the first step of the algorithm, an initial sequence in S is created such that the s, is the first
sub-problem to solve. When a sub-problem is solved first, the operations are scheduled within
their original time windows. If this sub-problem is the pushback, a lower bound of F2 is
obtained. On the other hand, this reduces the original time windows of the other tasks on the
same aircraft, i.e., the time windows of the elements in SR. Therefore, a worse value of F1 is
obtained.

At first, the elements in SR are ordered by the values that were assigned to identify the sub-
problems. In principle, when solving the last operation first, the best value of F2 is obtained
regardless the order of the elements in SR. However, solutions found should be as close as
possible to the Pareto optimal set, i.e., a solution with a lower bound of F2 with the minimum
value of FI. Therefore, after obtaining a solution with the initial sequence, the sub-problems in
SR are ordered by f1, that is, the total operation waiting time of the associated routing problem.
Then, we repeat the process to obtain a better sequence of SR.

In the second step, we aim to improve the value of F/, planning the remainder of the sub-
problems before the last operation. At each round, the sub-problem with the highest value of f7
in SR is selected for inclusion in BL and solved first. Adding sub-problems to BL, that is,
prioritizing the other operations with respect to s, usually leads to a decreasing F'/. Similar to
the above step, the chosen sub-problem is scheduled within its original time windows, which
leads to a lower bound of its f1. To find a range of solutions that represents the Pareto set, one
sub-problem is included in BL at each iteration. Thus, an improvement of F/ is reached when a
new value of F2 is found.

Finally, the process is repeated every time a new sub-problem is chosen. The goal of this step is
to explore the search space by modifying the sequence of sub-problems in each subset while
keeping the position of s,.

5. Computational Experiments

The algorithms described in this paper have been implemented in Java and linked to the open-
source CP software system ECLiPSe 6.0 [S1]. All tests have been performed on a non-dedicated
server with an Intel Xeon processor at 2.66GHz and 16GB RAM.

In this implementation, we have specified the parameters of the algorithms as follows. First, we
have tuned the I3 heuristic to obtain a compromise between minimizing operation waiting time
and the number of vehicles. We defined an interval for each parameter such that .,=[0.4,0.5],

.2=[0.4,0.5], .;=[0.01,0.1], and the algorithm was tested on the different combinations. The
best results are obtained with similar .; and .,, as well as with a low .;. In general, the
customer waiting time begins to rise when .; takes values greater than 0.05, and its influence is
bigger in the case of operations with larger time windows. Combination ( .; 2. 3.
=0.02) yields the best result for most of the instances tested. Therefore, we have selected these
values to specify the parameters. In addition, we have adjusted the initialization criterion to
minimize the operation waiting time. The client having the earliest start time to begin the
service was selected to initialize the routes.

Second, we have set the parameters of the CP-based VND-LNS methodology. Regarding the
SMART operator, we assigned 2 and 3 to the number of customers to be disconnected before and
after the pivots. In addition, the number of discrepancies has been limited to 2. As for the
RPOP, the maximum number of pivots to be chosen is set to 5, and the number of close
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customers to be removed around the pivot is set to 7. Because operations generally have tight
time windows, in our problem, removing customers closer to the pivot is more likely to produce
feasible movements than client random selection. Thus, we assign a higher value to the second
parameter. Furthermore, the branch-and-bound method used to repair the solution is limited to a
maximum execution time of 30 seconds in both operators. The entire local search process is
applied during a maximum of 250 seconds to ensure an improvement over the initial solution
found by the I3 heuristic.

5.1 Instances generation

To the best of our knowledge, no benchmark instances exist for the ground-handling problem.
Therefore, a set of scenarios was developed to validate the proposed approach.

To test the algorithm, we need the information about three crucial aspects: flight schedule,
aircraft parking distances, and tasks to be performed. We have used real data from two
important airports in Spain: Palma de Mallorca (PMI) and Barcelona (BCN). In the case of
PMI, we considered all aircraft performed a turnaround during a working day. In contrast, we
focus on a handling company that provides services at the BCN airport. That is, we have
employed the flight information used by the company to plan operations. Note that using data
with very different characteristics is quite useful to test the efficiency of the approach. In
addition to parking distances, the main difference between the two datasets used is the flight
arrival frequency and the type of aircraft planned to be serviced.

The following datasets were used to create the instances:

a) Two real flight schedules: (i) one flight schedule from PMI airport corresponding to a
summer business day with aircraft performing a turnaround; and (ii) one flight schedule
from BCN with aircraft scheduled for service during a typical day in June. Both datasets
include scheduled arrival and departure times, the type of aircraft, and the parking
position.

b) Distances between the parking positions and between them and the depot. PMI airport
has 180 parking stands, 27 of them remote stands. BCN airport has 263 parking stands.
A constant speed was used to calculate vehicle travel times.

c) Tasks information: Using specifications from aircraft manufacturers
[52,53,54,55,56,57,58], three types of aircraft with different sizes were modeled for the
PMI set and nine for BCN. For each operation included in the problem and according to
the type of aircraft, we considered the duration, precedence restrictions regarding other
tasks, and the type of vehicle used.

The vehicle that unloads and loads baggage for any given aircraft is usually the same.
Therefore, we have modeled both operations as one task, the UL/L. The other operations are
deboarding (DB), boarding (B), catering (Ca), cleaning (Cl), fueling (F), potable water (PW),
and toilet services (TS). Precedence restrictions between the tasks for each aircraft type defined
at PMI set are shown in Figure 5. The number assigned to identify each vehicle type is indicated
in parentheses. We do not consider aircraft parked at remote stands. When aircraft are parked at
a contact point, the DB and B operations do not have vehicles associated because they are
performed by means of bridges connected to the gate. Nevertheless, these activities are very
important during the turnaround service. They appear in precedence relationships, and their
calculations affect the time windows of other operations.
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Figure 5. Precedence relationships among tasks according to the modeled aircraft type: a)
Aircraft Type I, b) Aircraft Type 11, c) Aircraft Type 111. The number of the associated vehicle
type is indicated in parentheses

According to these precedence relationships and the duration of operations, type I corresponds
to aircraft with a turnaround time of between 30 and 40 minutes. Type II and type III are the
aircraft with 40-50 minute and 50-60 minute turnarounds, respectively. The different
characteristics of a turnaround, particularly the precedence relationships between operations at
each aircraft, influence their time windows and, consequently, the solutions obtained. Airlines
have some freedom within certain limits to modify the turnaround services specified by the
aircraft manufacturers. For that reason, three sets of instances C1, C2 and C3 were generated,
modifying the precedence constraints to test the algorithm. The first set was associated to the
precedence rules presented in Figure 5. In the second set, the relationships between PW and TS
were changed in types II and III, ensuring that TS is always performed before PW. In set C3, Ca
is performed independently of the DB/B operations in all aircraft types.

To simplify the scheduling process, the flight schedule has been divided into three eight-hour
shifts scheduled separately. In a given data set, the flight arrival frequency is relatively uniform
during the day as is the expected workload. We have selected eight hours because this is the
maximum duration of shifts. Shift duration can vary between 2 and 8 hours depending on
several aspects such as staff policies, workload, etc. In general, the employees who drive the
vehicles should come back to the depot when they finish their shift. Nevertheless, during these
eight hours, a shift change can be performed or vehicles can be planned to come back to the
depot for other reasons.

In the PMI set, a first group J1 was created between 23:00 and 7:00 hours with 42 aircraft. The
time interval between 7:00 and 15:00 hours with 64 aircraft corresponds to the J2 shift. The last
group, J3, has 83 aircraft between 15:00 and 23:00. J1 has fewer aircraft scheduled compared
with J2 and J3. However, the workload is similar because most of the aircraft are planned to
arrive between 4:00 and 7:00 in the morning. Each group was scheduled with the precedence
rules defined at each set. We assume that workers are available to perform the service when a
vehicle is assigned to an aircraft.

Regarding the BCN dataset, there is more variety of aircraft sizes covering scheduled flights.
We have represented nine types and their corresponding precedence constraints as outlined in
Figure 6. Six different precedence relationships have been identified in the aircraft modeled.
Notice that aircraft III, IV, V and VI have the same restrictions between the tasks. However,
operations have different durations and aircraft have different turnaround times. As with the
PMI instances, three sets C4, C5 and C6 were generated, modifying the precedence constraints.
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The first set was associated to the precedence rules described in Figure 6. In the second set, the
relationships between PW and TS were changed in (b) and (c), so TS is always performed
before PW. In the C6 set, the Ca is performed independently of the DB/B operations in all the

precedence relationships.
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Figure 6. Precedence relationships among tasks according to the modeled aircraft type: a)
Aircraft Type 1, b) Aircraft Type 11, c) Aircraft Type L1V, VIII;IX, d) Aircraft Type V, e)
Aircraft Type VI, f) Aircraft Type VII. The number of the associated vehicle type is indicated in
parentheses

In the BCN case, flight arrival frequency is lower due to only a subset of the arriving aircraft
during a day being handled by the company. In addition, aircraft are more uniformly distributed
in the timetable with respect to PMI. Because the company only has aircraft planned between
6:00 and 22:00 hours, the flight schedule was divided into two eight-hour shifts. A first group J4
was created between 6:00 and 14:00 hours with 56 aircraft. The time interval between 14:00 and
22:00 hours with 37 aircraft corresponds to the J5 group. Additionally, each group was
scheduled with all different precedence constraint sets. Hence, the algorithm was tested over 15
instances: 9 instances from PMI (C1J1, C1J2, C1J3, C2J1, C2J2, C2J3, C3J1, C3J2, C3]3), plus
6 from BCN airport (C4J4, C4J5, C5J4, C5J5, C6J4, C6J5). Each instance is enumerated with
the number of the set and the shift used.

5.2 Results
The detailed results of the problem C1J1 (precedence constraint rules C1, shift J1) for each

iteration of the SIM are presented in Table 1. The results are obtained by running the algorithm
only one time for each instance. In addition to the value of objectives F'I and F2, the obtained
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sequences of tasks and the number of vehicles used for each operation are shown. A solution
obtained after iteration is rejected if it has not improved either of the two objectives regarding
the previous iteration. In this instance, the sequence was modified 13 times, but only one

solution was discarded for that reason. Therefore, this problem has 12 solutions. As mentioned,
the value of F1 is usually improved when the sub-problem with the highest f/ is included in BL
to be solved first. In contrast, modifying the sequence of sub-problems keeping the position of
PB is less likely to produce an F'/ improvement. In this instance, F is always increased and the
process is repeated only one time. The set of solutions is presented in Figure 7. In addition, we

show the time spent by the algorithm to solve each sequence.

# Vehicles .

NIt R F20 Sequence 0 ci0) ca®) | F4) PW(S) TS(6) PB(7) O
1 2383 1594 (L123456) 19 12 12 10 4 8 4 1426.5
2 2165 1613 (6712345 18 12 12 9 6 7 4 1263.07
301980 1621 (5671234 18 o1 9 4 7 4 1473.71
4 2405 1619 (6574321 18 11 12 9 6 7 4 1545.45
5 1850 1655 (4567123) 18 119 4 7 4 1257.29
6 2154 1646 (6547321) 18 1 12 9 6 7 4 1308.99
71709 1695 (3456712) 18 11 9 4 7 4 1357.83
8 1998 1681 (6534721) I8 TR S 6 7 4 1471.98
9 1565 1715 (2345671 18 10 11 9 4 7 4 1348.54
10 1816 1687 (6534271) 17 10 11 9 6 7 4 1285.05
111510 1736 (1234567 16 10 11 9 4 7 s 1348.22
121792 1714 (6534217 16 10 11 9 6 7 5 1360.61

Table 1. Solutions obtained for the instance C1J1 at each iteration of the SIM
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Figure 7. Found solutions for the instance C1J1. Each solution is labeled according to the
iteration in which it is obtained. Non-dominated solutions, represented by bullets, define the
trade-off curve between the two objectives. The crosses indicate dominated solutions

The first solution in Table 1 corresponds to the first step of the algorithm and shows the
sequence to obtain the lower bound of F2. Regardless of the problem, the process is always
started with the same initial sequence of vehicles (7,7,2,3,4,5,6) (see Algorithm 2, step 1). As
shown, the vehicle numbers have been assigned following the operations order presented in

T
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T
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T
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T
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Figure 5. Each time a new sequence is obtained, the Solving Process is invoked and the routing
problem associated to each type of vehicle is solved.

In the next iteration, the sub-problem with the highest value of f1 is scheduled before PB, in this
particular case, TS. The value of fI depends on the reduction of the time window and the result

of the routing problem. In general, it is possible to identify activities or groups of activities

without precedence relationships in the turnaround. Regarding precedence restrictions and task

duration, an activity or group of activities could be more restrictive than the other ones. The
less-constrained operations have larger time windows, i.e., the service may be scheduled to
begin with higher tolerance. This situation is similar to the case in which two operations with
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different durations must be finished before a third one. The operation with the shorter duration
or the larger time window may have some waiting time without affecting the third task. We use
an upper bound for the number of vehicles; therefore, scheduling operations with larger time
windows usually results in higher waiting times. When the less-constrained operations are
included in BL before the other ones, the value of F2 is less affected. Usually, TS and PW are
operations with short durations, and we could say they belong to the less-restrictive group in Cl1.
The UL/L does not have precedence relationships with other operations, but it is the longest
one. Operations F, Cl and Ca are constrained according to the precedence rules defined for each
type of aircraft and are usually longer than TS and PW.

Each time a new vehicle is included in BL, the vehicles are ordered again by their f7/and the
process is repeated. Operations PW and TS are interdependent; therefore, the one which is
solved later will have a higher value of f1. In C1, PW is always performed before TS. When TS
is scheduled before PW, a better value of F2 is reached at the expense of reducing the time
window of PW. Notice in Table 1 the increase in the number of vehicles needed to perform PW
whenever TS is scheduled first.

Vehicle utilization is an important aspect of how the scheduling decisions of a resource affect
the other ones. Notice, for instance, the increase in the vehicles needed to perform the
operations whenever PB is solved first, particularly in the most constrained operations.
Obtaining lower values of F2 implies a time window reduction on the operations at the same
aircraft, and consequently an increment of employed vehicles. At the first iteration, the UL/L
needs 19 vehicles, whereas it uses 16 when PB is scheduled last (solutions 11 and 12). This
might be an interesting criterion to select a solution or prioritize an operation according to the
particular situation of a vehicle type. For instance, the schedule associated with solution 9 is
very similar to that of solution 11 regarding F'/ and F2. However, the UL/L needs 18 vehicles in
the former and 16 in the latter. The UL/L is usually the longest operation. If a delay or an
unexpected event occurs, it is more likely to need a spare vehicle; therefore, solution 11 might
be a good choice. On the other hand, the PB requires 4 and 5 vehicles in solutions 9 and 11,
respectively. If vehicles needed to perform PB are more limited in number, or they are more
expensive to use, solution 9 might be superior.

A summary of the results obtained for all instances from PMI data is outlined in Table 2, in
which the non-dominated solutions are marked with an asterisk. These solutions are shown in
Figure 8. The sequences obtained for the three shifts are very similar for each set because the
precedence relationships between operations are the same. Nevertheless, the number of aircraft
of each type is different at each instance. In the case of the C2 set, the relationship between
vehicles that perform PW and TS was modified in two aircraft types. The service time of PW is
shorter than TS in all aircraft, but in type III, the difference is very small. Values of the
objective functions are similar in shift J1 because there are few aircraft of type I. On the other
hand, the variation is more important in J2 due there being more aircraft of type II. Regarding
the C3 set, Ca does not have precedence relationships with the rest of the tasks. This favors the
value of F2 because the group of DB and B is less restrictive. This also increases the time
window of Ca because the operation is less constrained, and therefore fewer vehicles are needed
to accomplish it.
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Table 2. Summary of results obtained for PMI instances. Values of objectives F1 and F2 using
precedence constraint rules in C with shifts J are given for each column. The non-dominated

solutions are marked with an asterisk
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Figure 8. Pareto solutions for PMI instances C1J2, C1J3, C2J1, C2J2, C2J3, C3J1, C3J2, and

Cc3J

In the case of BCN instances, the number of resources required to perform operations is one of
the main differences regarding the PMI set. Many factors can influence these results, for
example, task durations or turnaround times in each schedule. Moreover, the flight arrival

frequency has a considerable effect on the number of vehicles. For instance, C4J5 and C1J1
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have a similar number of scheduled aircraft, 42 and 37, respectively. However, further resources
are needed in the former as shown in Tables 1 and 3.

# Vehicles

N FL F2 Sequence ) i) Ca(®) | F) PW(S) TS(6) PB(7) L)
1 4049 1359  [7123456] 11 7 7 6 2 4 2 118892
2 3577 1468 [5712346] 10 6 6 5 2 3 2 133395
300385 1449 [6571234] 10 6 6 5 4 3 2 131139
4 2999 1494 [5672413] 10 6 6 6 2 3 2 133187
52680 1595  [4567231] 9 6 6 5 2 3 2 120270
6 325 1558  [6547231] 9 6 6 5 4 3 2 133912
7 2398 1681 [34567.12] 8 6 6 5 2 3 2 113217
8 2028 1649 [6534712] 9 6 6 5 4 3 2 129072
9 263 1715 [2345671] 8 6 6 5 2 3 2 131130
10 2846 1698 [6325471] 8 6 6 5 4 3 2 111689
11 2118 1754 [1234567] 8 6 6 5 2 3 2 118939

Table 3. Solutions obtained for instance C4J5 at each iteration of the SIM

A summary of solutions found for instances C4J4, C4J5, C5J4, C5J5, C6J4, and C6J5 is
presented in Table 4. The non-dominated points are highlighted with an asterisk and are shown
in Figure 9. Slightly higher values of F1 are obtained when J5 is performed with set C5. Unlike
in J1, a higher number of aircraft with different durations of PW and TS are present in J5. When
the precedence relationship between these operations is changed, obtained results can be
affected. Solutions found with C6 showed similar behavior for both shifts J4 and J5. Because Ca
is less constrained than in the original set C4, the time windows for performing the operation are
longer and fewer vehicles are required. In general, this leads to obtaining worse values of F'/
because waiting times are increased. Nevertheless, having waiting time in the less-constrained
operation permits vehicles to be used more efficiently without affecting the overall performance
of the turnaround.

C4J4 C4J5 CsJ4 CsJ5 C6J4 CeJ5
N1 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2
1 6300*% 2276* 4049* 1359* 6658* 2276* 4271* 1369* 7239* 2248* 4269* 1363*
2 5975% 2319% 3577* 1468% 6587* 2274* 3767* 1450% 6574* 2322% 3849*% 1446*
3 5840% 2424* 3825% 1449* 5772* 2429% 3226* 1486* 6356* 2416% 4078* 1440*
4 5307*% 2484* 2999* 1494* 5648% 2448* 3464* 1478* 5618* 2457* 3266* 1459*
5 4942% 2595% 2680* 1595% 5319% 2458* 3204 1632 5009% 2572* 2882% 1524*
6 5684 2586  3252* 1558* 4826* 2632* 2988* 1552* 5863 2577 3556 1534
7 4608* 2736* 2398* 1681* 5306 2627 2730*% 1666* 4784* 2682* 2696* 1630*
8  4200* 2833* 2928 1649 4524* 2693* 2611 1722 5639 2630 3196 1573
9 5012 2753 | 2263* 1715% 4469* 2801* 2553* 1709* 4739*% 2776% 2363* 1683*
10 4100*% 2838* 2846 1698 4249* 2857* 2560 1731 5261 2717 2998 1632
11 4875 2833 2118* 1754* 4768 2855 2418* 1745*% 4487* 2843* 2133* 1753*
12 - - - - - - - - 5322 2830 2949 1736

T.T.(s) 1843825 17201.87 18982.47 18564.34 17345.39 16902.98

Table 4. Summary of results obtained for BCN instances. Values of objectives F1 and F2 found
using precedence constraint rules in C with shifts J are given for each column. The non-
dominated solutions are marked with an asterisk
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Figure 9. Pareto solutions for BCN instances

5.3 CP-based VND-LNS evaluation

Depending on the problem, CP can be expensive in computational time. However, it provides
other advantages such as the flexibility to add new constraints without affecting the search
process. According to [21], the CP-based approach proposed by Rousseau et al. [43] may be
more effective in real-life applications in spite of its long running time, as are other flexible
methods. In our case, each ground-handling operation or vehicle type has special characteristics
depending on many factors, e.g., airline policy, airport size, etc. In addition, these particular
features usually involve heterogeneous side constraints. Thus, flexibility and expressiveness for
modeling constraints are crucial aspects to be considered. Because we aim to use this approach
at a tactical level, we have more available time than would be available at an operational level.
Therefore computational time becomes less of an issue.

To evaluate the efficiency of the adopted CP-based VND-LNS we have compared the
methodology with some state-of-art algorithms for solving VRPTW problems. First, we have
used the well-known benchmark set developed by Solomon [16]. Second, we have implemented
the simulated annealing (SA) method presented in [59] for scheduling the handling vehicles in
our bi-objective approach.

Solomon instances are divided into six classes: R1, R2, C1, C2, RC1 and RC2. Customers in C1
and C2 are grouped in clusters whereas they are randomly distributed in R1 and R2. Classes
RC1 and RC2 have a mix of random and clustered distribution. Benchmarks are given in terms
of distance and number of vehicles. In our problem, we have employed the methodology to
minimize operation waiting time. The I3 heuristic was used to obtain an initial solution that
improves this objective without compromising the number of vehicles required. Therefore,
some adjustments of the algorithm should be done to use Solomon sets for comparison. First,
we modified the optimization objective of the algorithm to traveling distance. In addition, we
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used the 11 variant to make a fairer comparison. As mentioned, I1 yields the best distance
results. Therefore, it is the more appropriate variant to minimize traveling distance. In this case,
we used the parameter settings used by Solomon to obtain the best solutions. Regarding the
parameters of the VND-LNS local search process, we used the same values in the case of the
SMART operator. Values of RPOP are also the same, except that the maximum number of
pivots is set to 7. Due to benchmark instances having wider time windows than do operations at
the airport, more computational time is needed to improve the solutions. A CP-based algorithm
is expected to behave better as the problem gets tighter. When domains are larger, the algorithm
tries more values for each variable, growing the search tree size. We have increased the limit of
the branch-and-bound method to 50 seconds, and the process is applied for 500 seconds. The
results are also obtained by running the algorithm only one time for each instance.

Average results obtained with our approach (OS) for each class are outlined in Table 5. The
number of vehicles and the total traveling distance (TD) are shown. We have compared our
results with the best known solutions (BKS) [60] and with the SA method [59, 61]. In addition,
we have included a hybrid approach [62] and a recent LNS algorithm [63]. The relative error
(Gap) between OS and the other approaches has been calculated.

Prob BKS oS Gap (%) SA Gap(%)|Berger et al.[60] Gap(%)| Hong[61] Gap(%)
#Veh. TD [#Veh. TD OS-BKS|#Veh. TD OS-SA|#Veh. TD OS-[61][#Veh. TD 0OS-[62]
C1 | 10.00 828.38 ( 10.00 847.58 232 |10.00 82838 232 |10.00 82850 2.30 |10.00 833.10 1.74
C2 | 3.00 589.86( 3.00 606.25 2.78 | 3.00 589.86 2.78 | 3.00 590.06 2.74 | 3.00 590.31 2.70
RC1 [ 11.50 1384.16] 12.88 1455.61 5.16 | 11.50 1384.38 5.15 | 11.88 1414.86 2.88 | 12.13 1369.57 6.28
RC2 | 3.25 1119.24|3.875 1295.75 15.77 | 3.25 114495 13.17 | 3.25 125815 299 | 3.75 1131.18 14.55
RI1 [ 11.92 1210.34| 12.66 1300.50 7.45 |[12.25 1203.37 8.07 | 12.17 1251.40 3.92 |12.25 121828 6.75
R2 | 273 951.03 | 3.63 1117.54 17.51 | 291 962.51 16.11 | 2.73 1056.90 5.74 | 3.27 964.11 1591

Table 5. Average results for the Solomon benchmarks obtained with our local search approach
(OS). Results from the Simulated Annealing (SA) method [59,61], Berger et al. [62], and Hong
[63] are included for comparison

As observed, the results of classes C1 and C2 are better than those obtained for classes RC and
R. Our solutions in class C are closer to the best known solutions having a gap between 2 and 3
percent. In the ground-handling problem, visits are generally clustered due to the distribution of
stands around the terminal. Moreover, distances are shorter with respect to benchmark
problems. In relation to problems R and RC, they are far from the best results. The reason may
be found on the fact that the algorithm is stopped after 500 seconds, not providing enough time
to reach a minimum.

The next step was to evaluate the CP-based methodology for solving the VRPTWs in the
ground-handling problem. The SA method addresses the bi-objective nature of classical
VRPTW, i.e. minimizing number of routes and distance travelled, in this order. It has found
new best solutions for two Solomon problem instances [60]. For solving our problem, the cost
function of SA was modified to obtain a compromise between minimizing number of vehicles
(weighted by parameter a) and waiting time (weight b). We have adjusted a and b such that
similar number of vehicles with respect to our methodology are obtained. After running several
experiments we have set a to 30, 55 and 100 depending on to the instance and & =1. Moreover,
the number of annealing steps and iterations has been tuned to improve the performance of SA.
Good results were found with n’ to 4n” steps and between 20 and 90 iterations. Regarding
remaining parameters, the same setting proposed by the author were employed.

We have tested SA on instances C1J1, C2J2, C3J3, C4J4, and C4J5 and we show in Figure 10
the non-dominated solutions obtained with both methods. Visually, Pareto frontiers are similar.
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Solutions found with the same sequences are in general non-dominated, i.e. if one objective is
improved with SA the other is worst with respect to CP-based VND-LNS. The most notable
difference is the space covered by the Pareto set in instances C1J2 and C1J3. Also, there is a
small variation in the number of non-dominated solutions found.

To make a more precise comparison we have selected the coverage metric used in [64].
Different performance metrics have been proposed to compare results in a multi-objective
context. In particular, the coverage metric measures the number of solutions of one algorithm
that dominates the solutions of another algorithm. The coverage, average fleet size and
execution time associated to each instance are presented in Table 6.
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Figure 10. Pareto solutions obtained with our local search approach (OS) and the Simulated
Annealing (SA) method. Crosses and bullets represent OS and SA solutions, respectively

The coverage C(A,B) value is an interval [0,1] in which C(A,B) = 1 means that all solutions of
B are covered by A. In contrast, none of the solutions in B are dominated by A when C(A,B)=0.
Both C(A,B) and C(B,A) need to be calculated since C(A,B) =1- C(B,A) is not necessarily true.
As observed, either C(OS,SA) and C(SA,OS) values are less than 0.5 for all instances. That is,
most solutions are non-dominated between them and algorithms are comparable. In the case of
instances C1J2 and C4J5 there is a slight difference between both methods. SA improves the
Pareto set in C1J3 while our approach is better in C4J4.
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Problem s SA
#Vehicles Time (s) C(OS,SA) |#Vehicles Time (s) C(SA,0S)
ClJ1 9.41 16829.53 0.33 9.36 12580.97 0.13
Cl1I2 7.61 18023.17 0.16 7.42 15966.86 0.14
Cl1J3 6.54 16375.34 0.17 6.69 17460.36 0.38
C4J4 4.28 18438.25 0.33 422 18220.93 0.00
C4J5 4.9 17201.87 0.29 4.99 12836.44 0.37

Table 6. Coverage, average fleet size and execution time obtained by using OS and SA for
instances C1J1,C1J2, C1J3, C4J4 and C4J5

Regarding the computational effort, SA provides a higher performance for instances C1J1,
C1J2, and C4J5. However, annealing steps and iterations needed to be adjusted for each
instance to obtain good results in a good time.

We consider that the CP methodology is an efficient method for scheduling ground-handling
vehicles. It is a fact that SA yields better results for the Solomon instances. However, both
methods are comparable when solving VRPTWs associated to the ground-handling problem.
SA has a time advantage but it needs a harder parameter adjustment, which can be a major
drawback for real problems. The CP-based VND-LNS requires more time but solution quality is
comparable. In addition, our approach is more flexible to extend, a powerful feature to address
the particularities of ground-handling activities.

5.4 Evaluation of SIM

In workcenter-based decomposition methods, which are the reference cases for SIM, sub-
problems are solved in several sequences to improve the global solution. In our problem, the
SIM method modifies these sequences to find Pareto solutions for the bi-objective optimization
problem. Considering that solving each VRPTW is a complex problem, SIM was defined to find
a minimum set of solutions that can provide a proper representation of the Pareto set. Making an
exhaustive exploration and obtaining all possible solutions allows us to assess the performance
of the heuristic. However, computing all possible combinations, or even a high number as in
workcenter-based methods, is not viable in terms of computational effort.

The local search process is clearly the most time-consuming part of the algorithm, whereas a
quick, reasonably good initial solution is found by I3. Thus, we have run SIM to solve each
routing problem only with 13. Next, we compared SIM solutions with results found through an
exhaustive exploration of sequences, also with 13. Thus, we can verify how close SIM solutions
are to the Pareto frontier. Note that sequences produced by I3 are not necessarily the same as
using the local search process. However, this provides an effective mechanism to test the
performance of SIM.

SIM takes less than 1 second to generate a set of solutions. The maximum number of sequences
in an exhaustive exploration is a permutation of all vehicle types. In this problem, we have 7
vehicle types; therefore, an acceptable amount of CPU time is required to produce all solutions.
The algorithm spends approximately 8 minutes on each instance; therefore, this is a viable
option in this case. We have selected instances C1J1, C2J2, C3J3, C4J4, and C4J5 to test. The
results are depicted in Figure 11.
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Figure 11. Solutions obtained by SIM and using an exhaustive exploration for instances C1J1,
ClJ2, Cl1J3, C4J4 and C4J5. Black and white bullets represent SIM and exhaustive exploration
solutions, respectively

Notice that in less than 1 second, SIM is able to find Pareto solutions and provide a good
coverage of the frontier for most instances. Regarding instance C4J5, the coverage reached is
more discrete. This can be caused by the fact that there is a lower density of points on the Pareto
set, and non-dominated solutions are far from the rest. Considering that only a small subset of
solutions is explored in a minimum time, we consider that SIM provides a good representation
of the Pareto set.

6. Conclusions and Future Research

In the present paper, we propose a first approach for scheduling ground-handling vehicles at an
airport. Different operations and types of vehicles have been considered to tackle this problem
from a holistic perspective. We have modeled ground-handling services as a bi-objective
optimization problem, aiming to integrate the scheduling decisions about each resource and to
contribute to the optimization of the overall process. This goal is defined through two
objectives: (1) minimizing the operations waiting time and the total reduction of the time
windows, and (ii) minimizing the total completion time of the turnarounds.

The problem has been decomposed to allow the model and the solution method to be simplified

without losing the global approach of the proposal. First, time windows to complete operations

are obtained according to precedence constraints and turnaround time. One VRPTW for each

operation is identified and solved separately, and decisions made are propagated to the other

VRPTWs by reducing their time windows. This decomposition schema ensures that local

routing solutions can be integrated to obtain a consistent global solution. Time window

calculations as well as the reduction process have been performed very efficiently through
&RQVWUDLQW 3URJUDPPLQJYYV SURSDIJDWLRQ PHFKDQLVP

A quick first solution for each routing problem is obtained using the Solomon Insertion
Heuristic I3 method. A CP-based VND-LNS methodology to solve the VRPTW is applied as a
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local search process. This approach has been demonstrated to be effective at improving these
initial solutions. A new method we called Sequence Iterative Method was developed to improve
the global solution when dealing with the bi-objective problem.

The approach was tested using real-life data from the Palma de Mallorca and Barcelona airports
and specifications from aircraft manufacturers. The results show that different solutions
representing a trade-off between objectives were found, thus modifying the order in which
vehicles are scheduled. Moreover, the number of vehicles needed to perform operations can
change according to this order. This might be an important criterion to select between two
solutions with similar values of the objective functions. Schedules in which longer operations
use fewer vehicles could favor the robustness of the solution because they leave spare vehicles
that could be used in case of unexpected events or delays. Prioritizing activities with expensive
or fewer available vehicles might be another aspect contributing to the overall process
optimization. In addition, allowing some waiting time on the less-constrained operations leads
to saving on resources utilization without affecting the completion time of the turnaround.

Different aspects remain for further development of the presented work. We have considered the
most important operations during a turnaround, but we did not consider baggage transportation
or passenger transfer when aircraft are parked at a remote stand. Although we obtained
interesting conclusions on how the scheduling decisions of a resource affect scheduling of other
resources, the inclusion of these additional operations will further improve and enrich this study.
Furthermore, we have assumed a homogeneous fleet of each type of vehicle. Usually, vehicles
are compatible with a specific type of aircraft and cannot serve other types. Hence, considering
a heterogeneous fleet and including this constraint in the model is another topic for future
research. To this end, the flexibility of the adopted CP-based local search process allows
introducing new constraints with minimum modifications in the methodology. Including
manpower planning and rostering would also be an interesting topic for future development of
our approach.
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Table_1

# Vehicles

N FLF20 Sequence oy c12) ca3)  F@4) PW(S) TS(6) PB(7) me®)
T 2383 1594 (1,123456) 19 12 12 10 4 8 4 14265
2 2165 1613 (6,7,12345) 18 12 12 9 6 7 4 1263.07
301980 1621 (56,7,1234) 18 11 11 9 4 7 4 147371
4 2425 1619 (6574321 18 11 12 9 6 7 4 154545
51850 1655 (45.6,7,123) 18 11 11 9 4 7 4 125729
6 2154 1646 (6,54,732,1) 18 11 12 9 6 7 4 1308.99
71709 1695 (3456712 18 11 11 9 4 7 4 1357.83
8 1998 1681 (6534721 18 11 11 9 6 7 4 147198
9 1565 1715 (2345671) 18 10 11 9 4 7 4 1348.54
10 1816 1687 (6,53427,1) 17 10 11 9 6 7 4 1285.05
11 1510 1736 (1234567 16 10 11 9 4 7 5 134822
12 1792 1714 (6534217 16 10 11 9 6 7 5 1360.61




Table_2

z

C1

F1

F2

C1)2

F1

F2

C1J3

F1

F2

C2J1

F1

F2

C2)2

F1

F2

C2J3

F1

F2

C3J1

F1

F2

C3J)2

F1

F2

C3J3

F1

F2

TS 0000 R W=

12

2383*
2165*
1980*
2425
1850*
2154
1709*
1998
1565%*
1816*
1510%*
1792

1594*
1613*
1621*
1619
1655%*
1646
1695%*
1681
1715%*
1687*
1736*
1714

3389*
4064*
3509
2619*
2464*
3162
2101*
2904
1833*
2754
1756*
2499

2362*
2346*
2403
2393*
2414*
2399
2466*
2464
2490*
2486
2508*
2509

4717*
4281*
4608
3806*
3282%*
4121%*
3169*
3896
2818*
3547
2622%*
3301

3009*
3057*
3067
3112%*
3130*
3100*
3185%*
3173
3207*
3197
3264*
3252

2596*
2369*
2142%*
2364*
1864*
2096*
1762%*
1784*
1671%*
1709*
1513*

1676

1589*
1607*
1629*
1610*
1670%*
1654*
1694*
1680*
1707*
1699*
1712%*

1710

3770%*
3309*
3002%*
3438*
2623*
2869*
2349*
2756
2157*
2586
1924*

2331*
2357*
2381*
2346*
2422%*
2385%*
2464*

2444
2488*

2486
2513*

4867*
4524*
4096*
4394
3590*
3940
3360*
3046*
3428
2790*
3279

2994*
3053*
3083*
3104
3109*
3153
3177*
3203*
3215
3262*
3286

2798*
2748*
2360*
2640*
2086*
2476
1983*
2275
1764*
2170
1729%*
2054

1584*
1600*
1635%*
1613*
1659*
1639
1670%*
1662
1714*
1692
1734*
1711

3688*
4271*
3504*
3036*
3832
2809*
3548
2543*
2360
3067
2206*
2863

2360*
2345%*
2368*
2407*
2403
2455*
2447
2478*
2517
2514
2539*
2522

4848*
4715*
4098*
4640*
3741%*
4521
3521*
4271
3264*
3964
3108*
3690

3029*
3068*
3110%*
3087*
3161*
3133
3181*
3186
3218%*
3200
3280*
3265

T.T.(s)

16829.53

18023.17

16375.34

18112.82

18792.33

17971.83

16254.98

18798.34

17.605



Table_3

# Vehicles .
NIt FLF2 - Sequence 1y ci2) ca@) F@) PW(E) TSE) PBT) MEE)
T 4049 1350 [/,1,23456] 11 7 7 6 2 4 2 118892
2 3577 1468 [57,12346] 10 6 6 5 2 3 2 133395
3 3825 1449 [65,7,1234] 10 6 6 5 4 3 2 131139
4 2999 1494 [56,7,2413] 10 6 6 6 2 3 2 133187
5 2680 1595 [4567231] 9 6 6 5 2 3 2 120270
6 3252 1558 [6547231] 9 6 6 5 4 3 2 133912
7 2398 1681 [34,56,7,12] 8 6 6 5 2 3 2 113217
8 2928 1649 [6534,7,12] 9 6 6 5 4 3 2 129072
9 2263 1715 [23456,71] 8 6 6 5 2 3 2 131130
10 2846 1698 [6,325471] 8 6 6 5 4 3 2 111689
11 2118 1754 [1,234567 8 6 6 5 2 3 2 1189.39



Table 4

Z

C434

F1

F2

C435

F1

F2

C5J34

F1

F2

C5J5

F1

F2

C6J4

F1

F2

C6J5

F1

F2

O© oo ~NO O, WN P

=
o

11
12

6300*
5975*
5840*
5307*
4942*

5684
4608*
4200*

5012
4100*
4875

2276*
2319*
2424*
2484*
2595*

2586
2736*
2833*

2753
2838*

2833

4049*
3577*
3825*
2999*
2680*
3252*
2398*

2928
2263*

2846
2118*

1359*
1468*
1449*
1494*
1595*
1558*
1681*

1649
1715*

1698
1754*

6658*
6587*
5772
5648*
5319*
4826*

5306
4524*
4469*
4249*
4768

2276*
2274*
2429*
2448*
2458*
2632*
2627
2693*
2801*
2857*
2855

4271*
3767*
3226*
3464*
3204
2988*
2730*

2611
2553*
2560
2418*

1369*
1450*
1486*
1478*

1632
1552*
1666*

1722
1709*

1731
1745*

7239*
6574*
6356*
5618*
5009*

5863
4784*

5639
4739*

5261
4487*

2248*
2322*
2416*
2457*
2572*
2577
2682*
2630
2776*
2717
2843*

4269*
3849*
4078*
3266*
2882*
3556
2696*

3196
2363*
2998
2133*

1363*
1446*
1440~*
1459*
1524~
1534
1630*
1573
1683*
1632
1753*

5322 2830 2949 1736

T.T.(s)

18438.25

17201.87

18982.47

18564.34

17345.39

16902.98



Table_5

Prob

BKS
#Veh. TD

0s Gap(%)
#Veh. TD OS-BKS

SA Gap(%
#Veh. TD  OS-SA

Berger et al.[60 Gap(%)
#Veh. TD 0S-[61]

Hong [61] Gap(%)
#Veh. TD 0S-[62]

C1
C2
RC1
RC2
R1
R2

10.00 828.38
3.00 589.86
11.50 1384.14
3.25 1119.24
11.92 1210.34

10.00 847.58 2.32
3.00 606.25 2.78
12.88 1455.61 5.16
3.88 1295.75 15.77
12.66 1300.50 7.45

2.73 951.03

3.63 1117.54 17.51

10.00 828.38 2.32
3.00 589.86 2.78
11.501384.38 5.15
3.25 1144.95 13.17
12.251203.37 8.07

291 96251 16.11

10.00 828.50 2.30
3.00 590.06 2.74
11.881414.86 2.88
3.25 1258.15 2.99
12.2 1251.40 3.92

2.73 1056.90 5.74

10.00 833.10 1.74
3.00 590.31 2.70
12.131369.57 6.28
3.75 1131.18 14.55
12.251218.28 6.75
3.27 964.11 15.91



Table_6

Problem . . OS . . SA
#Vehicles Time (s) C(OS,SA) | #Vehicles Time (s) C(SA,0S)
C1J1 9.41 16829.53 0.33 9.36 12580.97 0.13
C1J2 7.61 18023.17 0.16 7.42 15966.86 0.14
C133 6.54 16375.34 0.17 6.69 17460.36 0.38
C4J4 4.28 18438.25 0.33 4.22 18220.93 0.00
C4J5 49 17201.87 0.29 4.99 12836.44 0.37




