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Cligues and a New Measure of Clustering:
with Application to U.S. Domestic Airlines

Steve Lawford and Yl Mehmeti

ENAC, University of Toulouse

Abstract

We propose a natural generalization of the well-known clustering coef cient for tri§(8sto any number of

nodes. We give analytic formulae for the special cases of three, four, and ve nodes and show, using data on
U.S. airline networks, that they have very fast runtime performance. We discuss some theoretical properties and
inherent limitations of the new measure, and use it to provide insight into changes in network structure over time.

1 Introduction

Networks are ubiquitous in social and economic settings. Recent examples of their empirical application include
Banerjee et al[4], Faris and Felmle§l2], Jacksor[16] (social networks), Akbas et 3], Cohen-Cole et al.
[7], El-Khatib et al.[11], Hochberg et a[14], Robinson and Stuaj22] ( nancial networks), and Aguirregabiria and
Ho [2], Baumgarten et al5], Guimea et al [13], Lin and Ban[18], Lordan et al[19], Ryczkowski et al[23], Verma
et al.[26] and Wuellner et al[27] (transportation networks). These papers formalize real-world interactions — such
as information transfer links between rms, or physical air travel routes between airports — using the tools of graph
theory. Typically, they report a selection of summary statistics to capture particular global or local aspects of the
network, including its density, distribution of node centrality, and clustering. These measures can provide insight
into network structure and dynamics, that would not be available from using other methods. Clustering is especially
important in economic and social networks, and captures the extent to which an individual's contacts are themselves
linked. There is evidence that a high level of clustering is related to cooperative social behaviour and bene cial
information and reputation transfer, and that many real-world networks exhibit higher clustering than if links were
formed at random (e.g. Newméan [21], Jackdon [15, 16] and references therein).

One widely used measure of clustering in a network (graph) istkeeall clustering coef cientvhich is de ned
in Newman|[[21, equation (3.3)] as, in our notation,

3 number of triangles in the network
number of connected triples of vertices

C(3) = 1)
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where aconnected triplds a set of three distinct nodesv andw, such that at least two of the possible edges
between them exist. In other words, how often are an individual's friends also friends with one another, on average,
across the entire network? SinCeE3) is based upon connected triples of nodes, it is natural to ask whether a similar
measure can be derived for any number of nodes. In this paper, we make the following speci ¢ contributions:

We propose a new generalized clustering coef cigit), based upon connected groupsafodes, which
nests the standard clustering coef ci€{(i3). We develop a very fast analytic implementation for connected
groups of three, four and ve nodes, that we show to be up to 2,000 times faster thare anested loop
algorithm, for some small dense graphs.

We examine some theoretical propertie€@b) and show that it will become prohibitively dif cult to compute

C(b) ef ciently as b increases, even using analytic formulae, since these will become too cumbersome to
derive. Using data on U.S. airline networks over time, we also shovCifiitcan be highly correlated across

b, and with network density, which may reduce its practical bene ts on some datasets of interest. It is not yet
known whether this high correlation holds generally for large classes of networks.

All analytic formulae that we use, and several proofs, are collected in Appendix A, and a supporting table of
correlation coef cients and additional gures are reported in Appendix B.

2 Graph Theory and Clustering

We brie y review some relevant tools of graph theory. Important monographs include OE3f¢mathematics),
Jacksorf15] (economics of social networks) and Jungnidiél] (algorithms). Agraphis an ordered paiG = ( V;E)
whereV andE denote the sets afodesandedgesof G, respectively. We use= jVj andm= jEj to represent
the numbers of nodes and edge<=ofA graph has an associatad n adjacency matrixg, with representative
element(g);; that takes value one when an edge is present between nade$, and zero otherwise. We also use
(i; j) 2 E to denote an edge between nodasd j, and say that they adirectly-connectedA graph issimple and
unweightedf (g)ii = 0 (no self-links) andg)ij 2 f 0;1g (no pair of nodes is linked by more than one edge, or by
an edge with a weight that is different from one). A graphnslirectedif (g)i; = (9)ji. A walk between nodes
nodes. A graph isonnectedf there is a path between any pair of nodesd j. In this paper, we consider simple,
unweighted, undirected and connected graphs.

The degreek; = &(9)ij is the number of nodes that are directly-connected to npded the(1-degree)
neighbourhoof nodei in G, denoted bys(i) = ] : (i;)) 2 Eg, is the set of all nodes that are directly-connected
toi. Thedensityd(G) = 2m=n(n 1) is the number of edges i@ relative to the maximum possible number of
edges in a graph with nodes. A grapl&®= (V2 E9 is asubgraphof G if VO V andE® E where(i; ) 2 E©
implies thati; j 2 V°. A spanning tre@n G is a connected subgraph with nodéand the minimum possible number
of edgean= n 1. A completegraph om nodesK,, has all possible edges, and a complete subgrafihnaales is
called ab-clique. A maximal cliques a clique that cannot be made larger by the addition of another nd@evith
its associated edges, while preserving the complete-connectivity of the cliquaxi#num cliqués a (maximal)
clique of the largest possible size®) and theclique numbem(G) of the graphG is the number of nodes in a

arise independently with constant probability Using the notation of Agasse-Duval and Lawf{idl, we refer

to particular topological subgraphs Méb), whereb is the number of nodes in the subgraph, anslthe decimal
representation of the smallest binary number derived from a row-by-row reading of the upper triangles of each
adjacency matrix from the set of all topologically-identical subgraphs on the samedes.



2.1 Analytic formulae for a generalized clustering coef cient

The clustering coef cien€(3) is bounded by) C(3) 1, attaining the minimum when there are no triangles in
the graph, and taking the maximum value for a complete gkaptSince each triangle contains three triples of
nodes, a factor of three appears in the numeratdr|of (1)."Yeradgorithm based on nested loops, that considers
every distinct triple of nodes i6, will run in O(n®) time. However, it is easy to write down an analytic version of
C(3), using the nested subgraph enumeration formulae in Agasse-Duval and Lawford [1, equations (1) and (2)]:

MY tr(d?)

o9 M) aikik 1)

(2)
and whereC(3) makes explicit the de nition of clustering in terms of tripIMéS) and triangle&/l@.

If we instead interpref {2) as the average probability that any three connected nodes in a graph are also completely-
connected, then a natural generalization follows to any nuiloémodes, suchth&8 b n. We de ne the
generalized clustering coef cieats follows:

a(b) number ofb-cliques inG
number ofb-spanning trees i’

C(b) = (3)
whereCayley's formulaa(b) = b? 2 gives the number of spanning treeskip, and ensures th& C(b) 1.
Clearly,C(b) nestsC(3), and equals zero if and only if there arelmgliques in the graph. Moreover, we show:

Proposition 2.1. Let G be a connected graph with at ledshodes(b 3). ThenC(b)= 1lif and only if G is
complete.

A nave algorithm for ), based on nested loops, will rurOmP) time. For example, the denominator EF (3)
can be calculated by considering every distinct sdi nbdes inG, and counting the number of spanning trees
on each subgraph. This will be excessively slow. If we instead thirf(bf as a measure of the prevalence of
b-cliques relative to all connected groupsbofiodes, then it is clear that we can use analytic subgraph enumeration
for counting the cligues and the spanning trees for the special C44pandC(5), in the same way as f(2):

C(4) = 16Mgg] _ 44t(g”) : @)
M@+ M@ &k Dk 2+ 68aj0etk Dk 1) 3M(g?)
c(5)= 125M{g,
MPj+ M+ Mgl
_ 2588 j2asi) r(((9 1) 1)) _ (5)

Caik(k Df(k 2(k 15 24g+ 128 2e(k D(ki+ K 8)(kj 1)
488> 2(0%ii(ki 2)+ 128i6(g%i;  12t(g)

The numerator ternjd;/lg)j andeig)zgj are the number of 4-cliques and 5-cliques respectively. The denominator
terms are the counts of the 4-stﬂﬂﬁ)j), the 4-pathja\/lg)j), the 5-starj0\/|§2)j), the 5-arrowj(M§E7’)j), and the 5-path
(jMé‘Z)j), which are illustrated in Figur@ 1 aEb 2. Since there are sixteen possible spanning trees on any given
four nodes in the graph, all of which will occur Ky, the factora(4) equals 16. Similarly, counting the distinct
5-spanning trees iK5 givesa(5) equal to 125.

However, while this approach seems promising, it will rapidly become too cumbersome to derive analytic
formulae for larger values dif, because the number of denominator terms explodes. Essentially, we would need
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Figure 1: The sixteen spanning trees on four labelled nodes: four 4-sté‘fsaMd twelve 4-paths fl\@).
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(a) 5-star Mg) . (b) 5-arrow (? . (c) 5-path I\/g?.

Figure 2: A selection of 5-node undirected connected subgraphs.
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Figure 3: The six non-isomorphic trees on six nodes.



to nd a formula for everynon-isomorphic tree oh nodes. For exampl&(6) would require evaluation of six
denominator terms (Figuig 3). Numerical values are given as series AO00055 in the Online Encyclopedia of
Integer Sequenceshftp://oeis.org/A000055 ). For exampleC(7) has 11 denominator termS(8) has 23
denominator terms, an@(36) has more than 6.2 10'? terms! This creates an intrinsic bound on the general
applicability of analytic formulae fo€E(b): we can reasonably expect to use themd¢s), C(4), C(5) and perhaps

C(6), but not beyond]

3 Data and Results

To illustrate the behaviour @&(b), we construct quarterly networks for eight airline carriers over the period 1999Q1

to 2013Q4, using publicly-available data from the U.S. Department of Transportation's DB1B Airline Origin and
Destination survey and T-100 Domestic Segment (All Carriers) cﬂw'ﬁm DB1B is a 10% random sample of
quarterly ticket-level itineraries, collected from reporting carriers. The T-100 is a monthly 100% census on domestic
nonstop ight segments, including number of enplaned passengers and available capacity. Both datasets have been
widely used in empirical work in economics e.g. Aguirregabiria andHo [2], Ciliberto and Tamer [6], Dailet al. [9].

We do not observe the actual date of ight or purchase, ticket restrictions, or the buyer's characteristics.

We merge the DB1B and T-100, retaining all scheduled nonstop round-trip tickets, for domestic carriers, between
airports in the continental U.S. We do not keep tickets that were sold under a codesharing agreement, that have
unusually high or low fares, or that are considered unreliable by the data provider. Some carriers (e.g. JetBlue
Airways and Southwest Airlines) report large numbers of business and rst class tickets. We only use coach class
tickets, unless more than 75% of a carrier's tickets are listed as business or rst class, in which case we keep all
tickets for that carrier. Individual tickets are then aggregated to non-directional route-carrier observations. We omit
route-carriers with an especially low number of passengers, that do not have a constant number of passengers on
each segment, or that are not present over the full sample period. In building the route networks, a node is an airport
that was served as a route origin or destination, and an edge is present if some passengers travelled on a direct route
between two nodes, for a given carrier-quarter. Our eight empirical networks are connected in every quarter of the
sample. Further details of the data treatment are available from the authors.

SinceC(b) is intimately related to the relative number of cliques, we start by using the Bron-Kerbosch algorithm
to identify all cliques in a given network. Figurg 4 displays the 2013Q4 network of Southwest Airlines, and highlights
one maximal 4-clique, between Albuquerque, Dallas, Houston, and Kansas City. It is interesting to see how many
maximal cliques of any given size there are in a network, and whether this distribution is stable over time. We
illustrate using Southwest's network, in Figlije 5, which shows that the distribution is more spread out, and that more
larger cliques appear, over time. There is a maximum clique size of eleven, which corresponds to 12.5% of all of the
airports served by Southwest in 2013Q4. This might seem surprising, given that Southwest's network is relatively
sparse, with a density(G) equal to 15% in that quarter. Since every airport in the maximum clique has at least
11 connections, we can think of it as a group of “important” airports, that are also very highly connected among
themselveAn operational reason for developing such groups could be to enable the opening of a large number
of new indirect routes between airport pairs, at relatively low cost, with the addition of a few well-chosen direct
routes. It seems likely that Southwest, through its network expansion, has focused both on increasing the size and
connectivity of a moderate number of “core” airports while also creating links from non-core airports into tF_ﬂe core.

1in the special case @(n; p), it follows directly from @) thaC(b) = p® Db 2=2in expectation, since there arg p(g) b-cliques and
o 2 g p° 1 b-spanning trees i®(n; p). Numerical values ofb21 are given in A161680 of the OEISh{tp://oeis.org/A161680 ).

2The carriers are American Airlines (AA), Alaska Airlines (AS), Delta Air Lines (DL), AirTran Airways (FL), Spirit Airlines (NK),
United Airlines (UA), US Airways (US), and Southwest Airlines (WN).

SWe nd evidence that nodes that belong to maximal cliques in Southwest's network are more connected, on average, than nodes that are
not in maximal cliques, and that the average degree of nodes in maximal cliques increases in the order of the cliq@Figure B.2).

“Not all networks evolve in this way e.g. the distribution of maximal cliques for American (AA) is far more stable over time ure B.3).
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Figure 4: The Albuquerque—Dallas—Houston—Kansas City maximal 4-clique in Southwest's network.
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Figure 5: The distribution of maximal k-cliques in Southwest's network, in 1999Q1, 2004Q2, 2009Q3 and 2013Q4.



Figure 6: Counterexample for @) C(4).

Since there are a substantial number of cliques with more than three nodes, we exam@{@ha&{4) and
C(5) vary across carriers, and over time (Fig@e 8). We make the following remarks:

There is considerable heterogeneity across carriers. For instance, Southwest has quiteCd3tat
1999Q1 to 2013Q4, despite its signi cant expansion in terms of airports and routes. On the other hand, United
has far more clustering (in triangles) from 2009 onwards, while Alaska has progressively less.

Generalized clustering(b) is highly positively correlated across for some networks e.g. Delta, and is also
positively correlated with network density (see Tdhle 1 in Appepdix B). Some of this follows by construction
e.g. for every newly formed 4-clique in a network, there will be between two and four new 3-cliques, while
every newly formed 5-clique will create between two and ve new 4-cliques and between three and ten new
3-cliques. High correlation reduces the information-conte@(@d) andC(5), but it is unclear whether this
result holds for most classes of network, or if airline networks are in fact a special case. In order to control for
this correlation, we might consider performing the following regressiGf4} = constant b C(3) + error
andC(5) = constant b C(3)+ gC(4)+ error, and using the residuals rather tha{@) andC(5) themselve@

There is some evidence tHa(3) > C(4) > C(5), and we might think that this holds for all graphs. However,
we were able to construct a series of (pathological) counterexamples.

The general rule behind the construction is as follows: we create a coripletéograph and then build a
“chain” of n b nodes attached to one of the node&jn As nincreases, the number of complete subgraphs

of order no more thab does not change (for instance, there are four triangles and one 4-complete subgraph in
Figure[§). Furthermore, increasingfter a certain point will only add paths of lendihio the denominator of

C(b), and no other spanning trees (ebgstars). It is easy to show that

12 16
nr10 % C@E N
from whichC(3) C(4) asn 26, with equality wher€(3) = C(4) = 1.

In Figure[7, the number of 4-complete and 5-complete subgraphs is consteincasases. Beyond a certain
point, only 4-paths and 5-paths are added to the denominat@&paindC(5) and no further 4-stars or
5-stars or 5-arrows are created. We can show that

C(3) = 6; (6)

80 125

= hres " TCOT es

8; (7)

SWe illustrate thec(4) procedure in Figul, for US Airways and Southwest (WN). S&(3 andC(4) display evidence of a unit
root (US) and a unit root and trend (WN), we rst run regressions of the D@¢b); = a + dt+ u(b)t, for b= 3;4. We then regress the
difference and trend stationabf4) on a constant ant(3), and nd that 76% (US) and 89% (WN) of the variation@{4) is “explained” by
C(3). In this senseC(4) is moderately informative ondg(3) has been accounted for. It is unclear if other networks will give similar results.



Figure 7: Counterexample for @) C(5).

from whichC(4) C(5) asn 97. Equality occurs wheg(4) = C(5) = 1% Incidentally, for this graph,
C(3) C(4) asn 122 i.e.,n< 13 In principle, this construction can be used to show @@l < C(b+ 1)

for anyb < n and suf ciently largen.

To end, we simulated the actual runtimes of the analytic formula€foy for b= 3;4;5, on dense Ermls-Renyi
graphsG(n;0:9), and compared these with the runtimes of a simple nested loop implementation. We are able to
show that the theoretical asymptotic runtime of each of the analytic clustering formulae is lower than that of the
nested Ioop.However, the small-sample runtime is much lower when analytics are used (E}gure 9): the analytic
algorithm is roughly 2,000 times faster f6f3) and more than 500 times faster fof4) andC(5) for the dense
G(n; p). While analytic runtime gains are lower for spafs@; p), they remain very substantial, and this contributes
to making these generalized clustering coef cients a practical tool.

4 Conclusions

We have examined the nature and dynamics of topological cliques in real-world airline networks. We propose a
fast generalized clustering coef cie@(b), that can be readily implemented foe 3;4;5. Despite some apparent
drawbacks, including the dif culty of deriving higher ord€fb), and high correlation across different valuedpf

the new measure can potentially provide insight regarding larger (than triangle) groups of completely-connected
nodes in a network. More generally, analytic formulae for subgraph enumeration might have application to other
statistics that are commonly used in applied graph theory. Future work linking graphs and econometrics should
also lead to a better understanding of the economic, strategic and spatial factors that drive dynamic clustering in
real-world networks.

6The worst-case theoretical runtime of a nested loop implementatiGtbpis O(n°), since there arb nested loops. In a very sparse
graph, the actual runtime of nested loops can be much faster, and coding shortcuts can take advantage of the fact thattuplenesds
to be considered. Directly fromi](2],](4) arid (5), we can see that the numerator will dominate the asymptotic runtime of the analytic formulae.
We nd thatC(3) is O(n%), C(4) is O(n"* 1), andC(5) is O(n"*2), wherew is the exponent of matrix multiplication, for which current
implementations giv@:38 w 3. The very fast matrix multiplication algorithms due to Coppersmith and Winof@jaahd Vassilevska
Williams [25] both havev  2:38, the well-known algorithm due to Strasseni [24] has 2:81, and a n&e algorithm hasv = 3.



(a) Southwest Airlines. (b) American Airlines.

(c) US Airways. (d) United Airlines.
(e) Spirit Airlines. (f) AirTran Airways.
(g9) Alaska Airlines. (h) Delta Air Lines.

Figure 8: The dynamic behaviour of(B@), C(4), C(5) and density from 1999Q1 to 2013Q4.



(@) C(3).

(b) C(4).

(€) C(9).

Figure 9: Runtimes, in seconds, 6{3), C(4) andC(5) analytic and nested loop algorithms, computed over 100 (or 20 for
C(4) and O 5)) replications of dense Emb-Renyi graphs @n;0:9), where we only retain connected graphs.
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A Proofs

Derivations for the 3-sta|l</|3 3 the trlangIeM§ ), the 4- stan\/lﬁ), the 4- patH\/I13 , the tadpolel\/l15 , and the 4-
completel\/lég) are given in Agasse-Duval and Lawfdi] Proposition 11.]. For completeness, we repeat the results
here, without proof, in Propositi.l. We also include the three spanning trees on ve nodes: the/lér’s)stﬂre

5- arrowM( % and the 5—patIMé2), as well as the 5—compIeM£g)23, all with their corresponding proofs.

Proposition A.1 (Analytic formulae for nested subgraph enumeration)

. i 10
MOi=8 5 =2 akk 1) ®
. .1
M= 2 tr(@): ©)
. j 10
MPi=4 = SAkK Dk 2 (10
| |
iM3i= & (k Dk D 3jMmPIj: (11)
(i:))2E
JMié)J—*a(gs)u(k' 2): (12)
k.>2
i@ — ) 3.
JMg3] = fatr(g i) (13)
63 24 : i
MZi=8 N = Lakk Dk 2k I (14)
& t 4 24 © '
. . o i 1 . .
M= & TG MG (15)
(i:))?2E
M = ,a(g4)” 2iMP; oiM®Pj 3iMYj 2iMiFi  2img]: (16)
|6]
M4 = £ AIMB(@ D= 38 & (g ) )Y (17)
i i j2Gs(i)

Remark A.1. In (13),g ; is the adjacency matrix corresponding to the subgraph induced by the neighbourhood
Gs(i) of i, which we denote bz | = (V(Gs(i)); E(Gs(i))) , and we use[(]g) to count the number of triangles.

Remark A.2. In ),é.(i;j) »g denotes summation over all edgesEinin bothdirections(i; j) and(j;i).

Remark A.3. In ), (g i) jisthe adjacency matrix corresponding to the subgraph induced by the neighbourhood
Gs i(j) of j, which we denote bz | ; =(V(Gs i()));E(Gs i(j))), and we us3) to count the number of
4-cliques.

Proof of Propositiofi A]L We treat each subgraph separately, and only report proofs that are not presented in
Agasse-Duval and Lawford|[1, Proposition I1.1].

(@) j|\/|(5)J Nodei has edges tl neighbours, and any four of those edges will form a 5-star, centeredidwe
result [I4) follows immediately.
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(b) ngg)j: The method of proof is similar to that used for the count of the nested 414}211%}] in Agasse-Duval
and Lawford[1]. Consider any edg@; j) 2 E, as the central edge in a 5-arrow. Leind j have degrees three
and two respectively, and let nodbe directly-connected to nodesindz, and let nodg be directly-connected
to nodey. Nodei hask; 1 possible neighbours (for nodgsndz) and nodej hask; 1 possible neighbours
(for nodey). There arel(k  1)(k 2)(k; 1) ways in which two neighbours afcan be paired with a

neighbour ofj, which gives a total o8 ;.22 (kj 1) across all possible central edges, in both

2
directions (we uséi; j)” to denote ti; j) and(j;i)”). This sum includes the unwanted cages y andx = z,
both of which form a tadpole. Since two of the four edges of the tadpole can be a candidate centfalj¢dge

of a 5-arrow, we subtracth/I%)j to give result).

(© jMéZ)j: A very similar but less transparent proof can be found in Movarraei and SHE@jreA 5-path is a
walk of length 4 with no repeated nodes. Note t%lé.ﬁgj(gél)ij gives the number of walks of length 4 from
to j, which does not only include 5-paths. There are ve subgraphs in which we can nd walks of length 4
that are not 5-paths:

Subgraph
3-path triangle 4-star 4-path tadpole
(3 (3 (4 (4 (4
M3 M7 Miy Mi3 Mis
Number of other walks of length 4 2 9 3 2 2

So, by removing them from the sum, we hgve| (16) as required.

(d) j|v|$>23j: Consider a 4-complete subgraMég) comprised of nodesg, k, | andm. Let each node be in the
neighbourhoodzs(i) of some nodésuchthai 6 j6 k6 | 6 m. Hence, the ve nodes j, k, | andm, and
the edges between them, form a 5-complete subgms{@g. The quantityj Még)(g i)j gives the number of
5-complete subgraphs that contain nodehereg ; is the adjacency matrix corresponding to the subgraph
induced byGgs(i). By symmetry, summing across all nodesill give ve times the total count of 5-complete
subgraphs in the graph, and so we divide the sum by ve to give résult (17), which can be simpli ed further
by using [(IB) to count 4-complete subgraphs in each subgeaph

O]
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Proof of Propositior 21 We consider the “if” and “only if” parts separately:

(if) Let G be complete. Hence, each setafodes ofG forms ab-clique andG contains exactlyg b-cliques.
The number ob-spanning trees db is equal to the number di-spanning trees enclosed in amglique
which is, using Cayley's formula:

be n .

from which (3) give<C(b) = 1.

(only if) We prove this part by contrapositive. Suppose thé not complete. Sinc& has at leadbh nodes,
we can nd a connected subgra@iof G with b nodes such tha®®is not ab-clique, and we can extract a
b-spanning tree fron&°by removing any cycles. Hence, there is at leastt®spanning tree i which is
not enclosed in &-clique. It follows that:

number ofb-spanning trees i number ofb-spanning trees enclosed ibalique+ 1
> number ofb-spanning trees enclosed ibalique
= b® 2 number ofb-cliques inG;

and saC(b) < 1 from (3), which proves the proposition.
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B Additional Figures and Tables

Variable C(3) C(4) C(5) density Variable C(3) C(4) C(5) density
C(3) 1.000 0.394 0:012 0.790 C(3) 1.000 0.992 0.963 0.864
p-value 0.000 0.002 0.927 0.000 p-value 0.000 0.000 0.000 0.000
C(4) - 1.000 0.910 0.365 C(4) - 1.000 0.984 0.852
p-value - 0.000 0.000 0.004 p-value - 0.000 0.000 0.000
C(5) - - 1.000 0.039 C(5) - - 1.000 0.861
p-value - - 0.000 0.766 p-value - - 0.000 0.000
density - - - 1.000 density - - - 1.000
p-value - - - 0.000 p-value - - - 0.000
(a) Southwest Airlines. (b) American Airlines.
Variable C(3) C(4) C(5) density Variable C(3) C(4) C(5) density
C(3) 1.000 0.897 0.659 0.781 C(3) 1.000 0.994 0.968 0.965
p-value 0.000 0.000 0.000 0.000 p-value 0.000 0.000 0.000 0.000
C(4) - 1.000 0.916 0.459 C(4) - 1.000 0.989 0.936
p-value - 0.000 0.000 0.000 p-value - 0.000 0.000 0.000
C(5) - - 1.000 0.102 C(5) - - 1.000 0.887
p-value - - 0.000 0.438 p-value - - 0.000 0.000
density - - - 1.000 density - - - 1.000
p-value - - - 0.000 p-value - - - 0.000
(c) US Airways. (d) United Airlines.
Variable C(3) C(4) C(5) density Variable C(3) C(4) C(5) density
C(3) 1.000 0.844 0.439 0:256 C(3) 1.000 0.854 0.333 0.539
p-value 0.000 0.000 0.000 0.049 p-value 0.000 0.000 0.009 0.000
C(4) - 1.000 0.709 0:414 C(4) - 1.000 0.682 0.156
p-value - 0.000 0.000 0.001 p-value - 0.000 0.000 0.235
C(5) B - 1.000 0:450 c(5) B B 1.000 0:255
p-value - - 0.000 0.000 p-value - - 0.000 0.049
density - - - 1.000 density - - - 1.000
p-value - - - 0.000 p-value - - - 0.000
(e) Spirit Airlines. (f) AirTran Airways.

Variable [¢E)] C(4) C(5) density Variable C(3) C(4) C(5) density
C(3) 1.000 NA NA 0.840 C(3) 1.000 0.970 0.807 0.838
p-value 0.000 NA NA 0.000 p-value 0.000 0.000 0.000 0.000
C(4) - 1.000 NA NA C(4) - 1.000 0.919 0.743
p-value - 0.000 NA NA p-value - 0.000 0.000 0.000
C(5) - - 1.000 NA C(5) - - 1.000 0.488
p-value - - 0.000 NA p-value - - 0.000 0.000
density - - - 1.000 density - - - 1.000
p-value - - - 0.000 p-value - - - 0.000

(g) Alaska Airlines.

Table 1: Pearson's correlation test for (3), C(4), C(5) and density, for different networks.
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(h) Delta Air Lines.



(a) US Airways.

(b) Southwest Airlines.

Figure B.1: Regression dE(4)” on a constant an@(3)”, where the star notation indicates that both coef cients have been
corrected so that they are difference and trend stationary, before performing the regression (see @otnote 5).
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Figure B.2: The mean (black line), median (green line), minimum (blue circle) and maximum (red triangle) degree of nodes
that belong to maximal cliques of ordkerin Southwest's 2013Q4 network. For comparison, we plot the mean
(black dashed line) and median (green dashed line) degree of all nodes in the network. Values in parentheses are
the total number of maximal cliques of order k in the network.

Figure B.3: The distribution of maximal k-cliques in American's network, in 1999Q1, 2004Q2, 2009Q3 and 2013Q4.
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