A hybrid machine learning model for short-term estimated time of arrival prediction in terminal manoeuvring area - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Transportation research. Part C, Emerging technologies Année : 2018

A hybrid machine learning model for short-term estimated time of arrival prediction in terminal manoeuvring area

(1) , (1) , (1)
1

Résumé

4D trajectory prediction is the core element of future air transportation system, which is intended to improve the operational ability and the predictability of air traffic. In this paper, we introduce a novel hybrid model to address the short-term trajectory prediction problem in Terminal Manoeuvring Area (TMA) by application of machine learning methods. The proposed model consists of two parts: clustering-based preprocessing and Multi-Cells Neural Network (MCNN)-based prediction. Firstly, in the preprocessing part, after data cleaning, filtering and data re-sampling, we applied principal Component Analysis (PCA) to reduce the dimension of trajectory vector variable. Then, the trajectories are clustered into several patterns by clustering algorithm. Using nested cross validation, MCNN model is trained to find out the appropriate prediction model of Estimated Time of Arrival (ETA) for each individual cluster cell. Finally, the predicted ETA for each new flight is generated in different cluster cells classified by decision trees. To assess the performance of MCNN model, the Multiple Linear Regression (MLR) model is proposed as the comparison learning model, and K-means++ and DBSCAN are proposed as two comparison clustering models in preprocessing part. With real 4D trajectory data in Beijing TMA, experimental results demonstrate that our proposed model MCNN with DBSCAN in preprocessing is the most effective and robust hybrid machine learning model, both in trajectory clustering and short-term 4D trajectory prediction. In addition, it can make an accurate trajectory prediction in terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) with regards to comparison models.
Fichier principal
Vignette du fichier
4D Trajectory Prediction in TMA.pdf (2.67 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01856677 , version 1 (13-08-2018)

Identifiants

Citer

Zhengyi Wang, Man Liang, Daniel Delahaye. A hybrid machine learning model for short-term estimated time of arrival prediction in terminal manoeuvring area. Transportation research. Part C, Emerging technologies, 2018, 95, pp.280 - 294. ⟨10.1016/j.trc.2018.07.019⟩. ⟨hal-01856677⟩
135 Consultations
1790 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More