Arrêt de service programmé du vendredi 10 juin 16h jusqu’au lundi 13 juin 9h. Pour en savoir plus
Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A hybrid machine learning model for short-term estimated time of arrival prediction in terminal manoeuvring area

Abstract : 4D trajectory prediction is the core element of future air transportation system, which is intended to improve the operational ability and the predictability of air traffic. In this paper, we introduce a novel hybrid model to address the short-term trajectory prediction problem in Terminal Manoeuvring Area (TMA) by application of machine learning methods. The proposed model consists of two parts: clustering-based preprocessing and Multi-Cells Neural Network (MCNN)-based prediction. Firstly, in the preprocessing part, after data cleaning, filtering and data re-sampling, we applied principal Component Analysis (PCA) to reduce the dimension of trajectory vector variable. Then, the trajectories are clustered into several patterns by clustering algorithm. Using nested cross validation, MCNN model is trained to find out the appropriate prediction model of Estimated Time of Arrival (ETA) for each individual cluster cell. Finally, the predicted ETA for each new flight is generated in different cluster cells classified by decision trees. To assess the performance of MCNN model, the Multiple Linear Regression (MLR) model is proposed as the comparison learning model, and K-means++ and DBSCAN are proposed as two comparison clustering models in preprocessing part. With real 4D trajectory data in Beijing TMA, experimental results demonstrate that our proposed model MCNN with DBSCAN in preprocessing is the most effective and robust hybrid machine learning model, both in trajectory clustering and short-term 4D trajectory prediction. In addition, it can make an accurate trajectory prediction in terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) with regards to comparison models.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-01856677
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : lundi 13 août 2018 - 11:38:36
Dernière modification le : mercredi 3 novembre 2021 - 05:15:01
Archivage à long terme le : : mercredi 14 novembre 2018 - 14:04:15

Fichier

4D Trajectory Prediction in TM...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Zhengyi Wang, Man Liang, Daniel Delahaye. A hybrid machine learning model for short-term estimated time of arrival prediction in terminal manoeuvring area. Transportation research. Part C, Emerging technologies, Elsevier, 2018, 95, pp.280 - 294. ⟨10.1016/j.trc.2018.07.019⟩. ⟨hal-01856677⟩

Partager

Métriques

Consultations de la notice

128

Téléchargements de fichiers

1757