Skip to Main content Skip to Navigation
Journal articles

A hybrid machine learning model for short-term estimated time of arrival prediction in terminal manoeuvring area

Abstract : 4D trajectory prediction is the core element of future air transportation system, which is intended to improve the operational ability and the predictability of air traffic. In this paper, we introduce a novel hybrid model to address the short-term trajectory prediction problem in Terminal Manoeuvring Area (TMA) by application of machine learning methods. The proposed model consists of two parts: clustering-based preprocessing and Multi-Cells Neural Network (MCNN)-based prediction. Firstly, in the preprocessing part, after data cleaning, filtering and data re-sampling, we applied principal Component Analysis (PCA) to reduce the dimension of trajectory vector variable. Then, the trajectories are clustered into several patterns by clustering algorithm. Using nested cross validation, MCNN model is trained to find out the appropriate prediction model of Estimated Time of Arrival (ETA) for each individual cluster cell. Finally, the predicted ETA for each new flight is generated in different cluster cells classified by decision trees. To assess the performance of MCNN model, the Multiple Linear Regression (MLR) model is proposed as the comparison learning model, and K-means++ and DBSCAN are proposed as two comparison clustering models in preprocessing part. With real 4D trajectory data in Beijing TMA, experimental results demonstrate that our proposed model MCNN with DBSCAN in preprocessing is the most effective and robust hybrid machine learning model, both in trajectory clustering and short-term 4D trajectory prediction. In addition, it can make an accurate trajectory prediction in terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) with regards to comparison models.
Document type :
Journal articles
Complete list of metadatas

Cited literature [28 references]  Display  Hide  Download

https://hal-enac.archives-ouvertes.fr/hal-01856677
Contributor : Laurence Porte <>
Submitted on : Monday, August 13, 2018 - 11:38:36 AM
Last modification on : Monday, August 20, 2018 - 11:25:28 AM
Document(s) archivé(s) le : Wednesday, November 14, 2018 - 2:04:15 PM

File

4D Trajectory Prediction in TM...
Files produced by the author(s)

Identifiers

Collections

Citation

Zhengyi Wang, Man Liang, Daniel Delahaye. A hybrid machine learning model for short-term estimated time of arrival prediction in terminal manoeuvring area. Transportation research. Part C, Emerging technologies, Elsevier, 2018, 95, pp.280 - 294. ⟨10.1016/j.trc.2018.07.019⟩. ⟨hal-01856677⟩

Share

Metrics

Record views

171

Files downloads

1655