, ADAPT2. aircraft data aiming at predicting the trajectory. data analysis report, 2009.

R. Alligier, D. Gianazza, and N. Durand, Learning the aircraft mass and thrust to improve the ground-based trajectory prediction of climbing flights, Transportation Research Part C: Emerging Technologies, vol.36, pp.45-60, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00907651

R. Alligier, D. Gianazza, M. G. Hamed, and N. Durand, Comparison of Two Ground-based Mass Estimation Methods on Real Data (regular paper), International Conference on Research in Air Transportation (ICRAT)

R. Alligier, D. Gianazza, and N. Durand, Machine learning and mass estimation methods for ground-based aircraft climb prediction. Intelligent Transportation Systems, IEEE Transactions on, vol.16, issue.6, pp.3138-3149, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01181173

R. Alligier, D. Gianazza, and N. Durand, Machine learning applied to airspeed prediction during climb, Proceedings of the 11th USA, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01168664

M. Christopher and . Bishop, Pattern recognition and machine learning, vol.1, 2006.

M. Bourgois and M. Sfyroeras, Open data for air transport research: Dream or reality?, Proceedings of The International Symposium on Open Collaboration, p.17, 2014.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees. Statistics/Probability Series, 1984.

J. Bronsvoort, G. Mcdonald, M. Paglione, C. M. Young, J. Boucquey et al., Real-time trajectory predictor calibration through extended projected profile down-link, Eleventh USA/Europe Air Traffic Management Research and Development Seminar, 2015.

R. Grover-brown, Y. C. Patrick, and . Hwang, Introduction to random signals and applied Kalman filtering, vol.3, 1992.

. Eurocontrol-experimental-centre, Coverage of 2016 european air traffic for the base of aircraft data (bada) versions 3.14 & 4.2, EUROCONTROL, 2017.

G. Chaloulos, E. Crück, and J. Lygeros, A simulation based study of subliminal control for air traffic management, Special issue on Transportation Simulation Advances in Air Transportation Research, vol.18, issue.6, pp.963-974, 2010.

S. Yashovardhan, H. Chati, and . Balakrishnan, Statistical modeling of aircraft takeoff weight, 2017.

. Sesar-consortium, Milestone Deliverable D3: The ATM Target Concept, 2007.

R. A. Coppenbarger, Climb trajectory prediction enhancement using airline flight-planning information, AIAA Guidance, Navigation, and Control Conference, 1999.

F. Drogoul, P. Averty, and R. Weber, Erasmus strategic deconfliction to benefit sesar, Proceedings of the 8th USA/Europe Air Traffic Management R&D Seminar, 2009.

N. Durand, J. Alliot, and J. Noailles, Automatic aircraft conflict resolution using genetic algorithms, Proceedings of the Symposium on Applied Computing, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00937685

J. H. Friedman, Greedy function approximation: A gradient boosting machine, Annals of Statistics, vol.29, pp.1189-1232, 2000.

J. H. Friedman, Stochastic gradient boosting, Computational Statistics Data Analysis, vol.38, issue.4, pp.367-378, 2002.

M. Ghasemi and H. , Méthodes non-paramétriques pour la prévision d'intervalles avec haut niveau de confiance: application à la prévision de trajectoires d'avions, Thèse doctorat informatique de l'INPT, 2014.

T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning. Springer Series in Statistics, 2001.

M. Hrastovec and F. Solina, Machine learning model for aircraft performances, Digital Avionics Systems Conference (DASC), 2014 IEEE/AIAA 33rd, pp.8-12, 2014.
DOI : 10.1109/dasc.2014.6979541

URL : http://eprints.fri.uni-lj.si/2884/1/Hrastovec_DASC14.pdf

M. Hrastovec and F. Solina, Prediction of aircraft performances based on data collected by air traffic control centers, Transportation Research Part C: Emerging Technologies, vol.73, pp.167-182, 2016.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen et al., Lightgbm: A highly efficient gradient boosting decision tree, Advances in Neural Information Processing Systems, vol.30, pp.3149-3157, 2017.

R. Koelle, Open source software and crowd sourced data for operational performance analysis, Proceedings of the 12th USA, 2017.

Y. Le-fablec, Prévision de trajectoires d'avions par réseaux de neurones, Thèse doctorat informatique de l'INPT, 1999.

J. Lopes-leonés, The Aircraft Intent Description Language, 2007.

J. López-leonés, M. A. Vilaplana, E. Gallo, F. A. Navarro, and C. Querejeta, The aircraft intent description language: A key enabler for air-ground synchronization in trajectory-based operations, Proceedings of the 26th IEEE/AIAA Digital Avionics Systems Conference. DASC, 2007.

P. Martin and G. Mykoniatis, Study of the acquisition of data from aircraft operators to aid trajectory prediction calculation, 1998.

V. Mouillet, User manual for base of aircraft data (bada) rev.3.14, 2017.

Y. S. Park and D. P. Thipphavong, Performance of an Adaptive Trajectory Prediction Algorithm for Climbing Aircraft, Aviation Technology, Integration, and Operations Conference, p.8, 2013.
DOI : 10.2514/6.2013-4263

X. Prats, V. Puig, J. Quevedo, and F. Nejjari, Multi-objective optimisation for aircraft departure trajectories minimising noise annoyance, Transportation Research Part C, vol.18, issue.6, pp.975-989, 2010.
DOI : 10.1016/j.trc.2010.03.001

A. Charles, D. Schultz, H. Thipphavong, and . Erzberger, Adaptive trajectory prediction algorithm for climbing flights, AIAA Guidance, Navigation, and Control (GNC) Conference, pp.978-979, 2012.

M. Schäfer, M. Strohmeier, V. Lenders, I. Martinovic, and M. Wilhelm, Bringing Up OpenSky: A Large-scale ADS-B Sensor Network for Research, Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, IPSN '14, pp.83-94, 2014.

H. Shimodaira, Improving predictive inference under covariate shift by weighting the log-likelihood function, Journal of statistical planning and inference, vol.90, issue.2, pp.227-244, 2000.
DOI : 10.1016/s0378-3758(00)00115-4

J. Sun, World aircraft database, 2017.

J. Sun, J. Ellerbroek, and J. Hoekstra, Modeling and inferring aircraft takeoff mass from runway ads-b data, 7th International Conference on Research in Air Transportation, 2016.

J. Sun, J. Ellerbroek, and J. Hoekstra, Bayesian inference of aircraft initial mass, Proceedings of the 12th USA/Europe Air Traffic Management Research and Development Seminar. FAA/EUROCONTROL, 2017.

J. Sun, J. Ellerbroek, and J. Hoekstra, Modeling aircraft performance parameters with open ads-b data, Proceedings of the 12th USA/Europe Air Traffic Management Research and Development Seminar. FAA/EUROCONTROL, 2017.

H. Swenson, R. Barhydt, and M. Landis, Next Generation Air Transportation System (NGATS) Air Traffic Management (ATM)-Airspace Project, 2006.

K. Tastambekov, S. Puechmorel, D. Delahaye, and C. Rabut, Aircraft trajectory forecasting using local functional regression in sobolev space, Transportation Research Part C: Emerging Technologies, vol.39, issue.0, pp.1-22, 2014.
DOI : 10.1016/j.trc.2013.11.013

URL : https://hal.archives-ouvertes.fr/hal-00924360

C. A. David-p-thipphavong, A. G. Schultz, S. Lee, and . Chan, Adaptive algorithm to improve trajectory prediction accuracy of climbing aircraft, Journal of Guidance, Control, and Dynamics, vol.36, issue.1, pp.15-24, 2012.

M. Uzun and E. Koyuncu, Data-driven trajectory uncertainty quantification for climbing aircraft to improve ground-based trajectory prediction, vol.18, pp.323-345, 2017.
DOI : 10.18038/aubtda.270074

URL : https://doi.org/10.18038/aubtda.270074

C. Vanaret, D. Gianazza, N. Durand, and J. Gotteland, Benchmarking conflict resolution algorithms, International Conference on Research in Air Transportation (ICRAT), 2012.
URL : https://hal.archives-ouvertes.fr/hal-00863090

V. N. Vapnik, The nature of statistical learning theory, pp.0-387, 1995.

N. Vladimir, A. Vapnik, and . Ya, Chervonenkis. The necessary and sufficient conditions for consistency of the method of empirical risk minimization, Pattern Recogn. Image Anal, vol.1, issue.3, pp.284-305, 1991.