Skip to Main content Skip to Navigation
Journal articles

A New Algorithm for High-Integrity Detection and Compensation of Dual-Frequency Cycle Slip under Severe Ionospheric Storm Conditions

Abstract : Many strategies for treating dual-frequency cycle slip, which can seriously affect the performance of a carrier-phase-based positioning system, have been studied over the years. However, the legacy method using the Melbourne-Wübbena (MW) combination and ionosphere combination is vulnerable to pseudorange multipath effects and high ionospheric storms. In this paper, we propose a robust algorithm to detect and repair dual-frequency cycle slip for the network-based real-time kinematic (RTK) system which generates high-precision corrections for users. Two independent and complementary carrier-phase combinations, called the ionospheric negative and positive combinations in this paper, are employed for avoiding insensitive pairs. In addition, they are treated as second-order time differences to reduce the impact of ionospheric delay even under severe ionospheric storm. We verified that the actual error distributions of these monitoring values can be sufficiently bounded by the normal Gaussian distribution. Consequently, we demonstrated that the proposed method ensures high-integrity performance with a maximum probability of missed detection of 7.5 × 10-9 under a desired false-alarm probability of 10-5. Furthermore, we introduce a LAMBDA-based cycle slip compensation method, which has a failure rate of 1.4 × 10-8. Through an algorithm verification test using data collected under a severe ionospheric storm, we confirmed that artificially inserted cycle slips are successfully detected and compensated for. Thus, the proposed method is confirmed to be effective for handling dual-frequency cycle slips of the network RTK system.
Complete list of metadatas

Cited literature [47 references]  Display  Hide  Download

https://hal-enac.archives-ouvertes.fr/hal-01912050
Contributor : Laurence Porte <>
Submitted on : Thursday, December 20, 2018 - 5:30:15 PM
Last modification on : Tuesday, July 23, 2019 - 1:42:01 PM

File

Sensors_DK.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Donguk Kim, Junesol Song, Sunkyoung Yu, Changdon Kee, Moonbeom Heo. A New Algorithm for High-Integrity Detection and Compensation of Dual-Frequency Cycle Slip under Severe Ionospheric Storm Conditions. Sensors, MDPI, 2018, 18 (11), ⟨10.3390/s18113654⟩. ⟨hal-01912050⟩

Share

Metrics

Record views

72

Files downloads

153