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Abstract—Airports Terminal Maneuvering Areas (TMA) and
Control Traffic Regions (CTR) are characterized by a dense
air traffic flow with high complexity. In nominal operations,
approach flight path safety management consists in procedures
which guide the aircraft to intercept the final approach axis,
and the runway slope with an expected configuration in order
to land. Some abnormal flights are observed and considered
as Non Compliant when the intermediate and the final leg
intercepting conditions do not comply with the prescription of the
operational documentation. This kind of trajectories generates
difficulties for both crew and Air Traffic Control (ATC) and may
induce undesirable events such as Non Stabilized Approaches
or ultimate events like Control Flight Into Terrain (CFIT),
in the worst cases. There is a real need for atypical flights
detection tools in order to improve safety. In this paper, a
post-operational detection method based on functional principal
component analysis and unsupervised learning will be presented
and compared to geometric features.

Index Terms—Flight Path Safety Management, Atypical Flight
Event, Non-Compliant Approach, Functional Principal Compo-
nent Analysis, Unsupervised Learning, Anomaly Detection

I. INTRODUCTION

A. Operational Motivations

Approach and landing accidents (i.e. accidents that occur
during initial approach, intermediate approach and landing)
represent every year 50% of total hull losses and 55% of
fatalities. Moreover, a great majority of accidents presents
significant atypical events from nominal approaches such as
atypical speed or atypical altitude [1], [2]. In addition, Air-
ports Terminal Maneuvering Areas (TMA) and Control Traffic
Regions (CTR) are characterized by a dense air traffic flow
with high complexity. This complexity will surely increase
since IATA forecast a growth of air passenger worldwide
from around 4 billion today, up to 7.8 billion in 2036 [3].
Consequently, there is a crucial need for aircraft atypical
approach detection.

To respond to the International Civil Aviation Organization
(ICAO) safety requirement, the French Civil Aviation Author-
ity has launched since 2006 a national safety program, which
for the time being, is divided into two State Safety Program
(SSP) published for the period 2009-2013 [4] and 2013-
2018 [5]. A SSP for the period 2018-2023 is currently being
published. The risk portfolio [6] distinguishes undesirable
events such as Non Stabilized Aproaches (NSA), from ultimate
events such as Control Flights Into Terrain (CFIT) or mid-air

collisions. Undesirable events may lead to final events and
therefore jeopardize safety or reduce airfield capacity. Their
identification and detection is an important issue.

In nominal operations, flight path safety management con-
sists in procedures which guide the aircraft to intercept the
final approach axis, and the runway slope with an expected
configuration in order to land. A particular undesirable event
called Non Compliant Approach (NCA) was defined in the
second version of the 2008-2013 safety program risk portfo-
lio [6]. An approach is considered not compliant when the
intermediate and the final leg intercepting conditions do not
comply with the prescription of the operational documentation.
It may occur during radar vectoring or not, and for visual or
instrument approaches. A NCA is a potential precursor of NSA
[7]. A stabilized approach is one in which the pilot establishes
and maintains a constant angle glide-path, an approach speed
and an aircraft configuration towards a predetermined point on
the landing runway.

Geometrical criteria with horizontal and lateral margins
from the nominal path were defined to distinguish a compliant
from a non-compliant approach. In particular, interception
chevrons were created. They define a 45° maximum angle of
procedure radial interception. This angle may be reduced to
30° in specific situations such as dependent parallel runways.
Besides, a flight is expected to attend a 30 second level-off
flight during the intermediate leg before descending on runway
slope in order to reduce speed and to configure properly for
landing. Figure 1 illustrates those criteria.

Fig. 1: Description of Compliant Approach Criteria and illus-
tration of Stabilized Approach

For example, NCAs were found in different accidents such
as the Air Nostrum flight 8313 on July, 30th 2011, where the
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aircraft suffered structural damages following hard landing at
Barcelona Airport [8]. Peeks of descent rate above 3000ft/min
were recorded and the aircraft flew over threshold at 315ft,
where nominal Reference Datum Height (RDH), i.e. the nom-
inal height above threshold on-glide is around 50ft. Another
example is the crash of Asiana Airline flight 214 of July, 6th
2014 at San Francisco Airport, which counted 3 fatalities and
185 injuries [9]. The airplane was recorded with a very low
speed in final approach, and finally stalled before crashing.

B. Previous Related Works in ATC

Compliance criteria were applied to flight operations to
give a state of the current situation at Paris Charles-De-
Gaulle (CDG) Airport between February and August 2014.
The module NCA of the French Civil Aviation Authority
tool called ELVIRA [10] was used. This module is a post-
operational analysis tool that studies radar trajectories and
describes their compliance. Over this period, 22% of flights
were detected as non-compliant with approximately 2% being
significant [11]. It implies that the definition of compliance
could be improved since a large majority of detected non-
compliant flights, do not present significative safety issues.
Too many false non-compliant alarms may occur, which is
troublesome for Air Traffic Control (ATC) operations. Besides,
there is a real lack of energetic features. This study led to
the identification of different contributing factors and bias for
NCAs such as extra energy owing to overspeed or downwind
in final approach, or the influence of the QNH during the
operations. Specific atypical situations called Glide Intercep-
tion From Above (GIFA) were pointed out. These situations
are particularly critical owing to the potential difficulties to
manage the aircraft energy and because aircraft are nether
designed nor certified to intercept glide slope from above [12],
[13].

To improve the safety and decrease the number of GIFA
an online detection tool was set up at CDG Airport and used
by ATCs on real time. It consists in four 3D-volumes using
the Area Proximity Warning (APW) described in Figure 2.
The first three volumes are warning volumes, the ATCs advise
pilots that they are too high on glide. The final volume is
a decision volume, where the ATC and pilots must take the
decision to continue or to interrupt the approach.

The results of the experiments are positive since GIFAs are
detected and an appropriate response is now taken. Approxi-
mately 5 flights over 700 per day rise an alarm and in about
half cases, ATCs suggest a recovery slope as recommended
[13].

Our work consists in enhancing compliance criteria and
developing methodologies to detect NCA and atypical flights
post-operatively and online. This paper presents new criteria
that extend those defined in the NCA module of ELVIRA
and defines off-line methodologies based on the specific total
energy of the aircraft.

Fig. 2: Illustration of the Area Proximity Warning set up at
CDG

C. Functional Data Analysis Approach

Functional Principal Component Analysis (FPCA), is a
powerful mathematical tool from Functional Data Analysis
(FDA). FDA consists in studying a sample of random functions
generated from an underlying random variable [14]. They
deeply evolved during the 2000s with Ramsay et Silverman
[14]–[16]. Other theoretical and applied aspects like regression
or clustering were published by Ferraty and Vieu [17], [18].

The applications of FDA are numerous. In [19] Ullah et
al. state many applications and underline its multidisciplinary
purpose. In particular, FDA is used in various research fields
such as medecine, biomedical, biology, finance, demography.
In aeronautics, FDA is also widespread. Gregorutti [20] uses
data from flight recorder to develop a prediction tool for long
and hard landings. The tool mixes FDA and wavelets decom-
position with machine learning like random forests. During
his PhD a software was developed and is now commercialised
by a company called SafetyLine. Suyundikov [21] presented a
multivariate functional data clustering from trajectories using
FPCA in Sobolev spaces. Hurter et al. [22] developed a
bundling algorithm for radar trajectory visualization based on
a smoothing splines decomposition and FPCA. Tastambekov
[23] developed an aircraft trajectory predictor based on local
functional regression with wavelet decompostion and a k-mean
clustering algorithm. Nicol [24] applied FPCA to study the
underlying mode and pattern of variation of aircraft trajecto-
ries. Barreyre et al. presented a novel outlier detection tool in
functional data [25], and a statistical outlier detection [26]
for space telemetries, based on wavelet decomposition and
principal component analysis. Finally, Yan et al. [27] proposed
to apply FPCA to a sliding window for dynamic prediction of
longitudinal biomarker data, in order to enhance performance
robustness.

In this paper we will propose a method to detect atypical
approaches by applying recursively on a sliding window
the following process. First, reduce the dimensions using a
FPCA on total energy trajectories. Then, apply a hierarchical
clustering and finally give a compliance score from outlier
detection.

Our paper is divided in four parts. In the first part, mathe-
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matical backgrounds around functional data analysis and data
clustering will be presented. In the second part, we will present
different features that extend the actual geometric criteria to
detect non-compliant approaches. Then, our atypical approach
detection method will be presented. Finally, the method will
be illustrated on real data and specific operational situations.

II. MATHEMATICAL BACKGROUNDS

A. Functional Data and Functional Principal Component
Analysis

In FDA, data are functions, and methoods focus on the
statistical analysis of a sample of curves. In practice, we
observed a discretization of these functions on a grid of time
locations. For this reason, the first step of FDA consist in
recovering the functional nature of curve data from discretised
curve data by using a decomposition on a functional basis.
There are different basis function systems in the literature like
polynomial basis, Fourier basis, wavelet basis or smoothing
spline basis [16]. Then, most of the multivariate statistical
method may be extended to the functional setting, such as
the Principal Component Analysis (PCA), in order to identify
the most important source of variation in the sample of curves
and cut down the complexity of the data.

In our context, approach trajectories are functional in nature,
mapping a time interval to a state space Rd. In this paper, such
curve data are discretely recorded by radar every 4 seconds.
Trajectories are observed on a time interval [0, Ti], which can
be different for each trajectory.

PCA is a powerful statistical method that summarizes
a significant amount of data information by creating new
variables as the linear combination of existent variables. It
is an orthogonal projection that concentrates the majority
of the variance in the first components. It enables simpler
representation and analysis of complex or even large dimen-
sion variables. In practice, data are projected over the eigen
basis of the covariance matrix of the observations ordered by
decreasing eigen values.

PCA was extended to the functional case called FPCA by
Deville [28] and Dauxois [29], [30]. When data are functions
sampled from an underlying stochastic process, FPCA enables
dimensionality reduction by estimating a truncated Karhunen-
Loève decomposition. Therefore, when the principal compo-
nents are determined, the trajectories can be represented by
their decomposition coefficients on the principal component
basis and considered as a small dimension vector.

In this paper, we will not use a grid of time location
but a grid of curvilinear distance to the runway threshold
location. The curvilinear distance is the distance flown by
the aircraft along the trajectory. Indeed, to enable consistent
comparisons between flights in the approach phase, flights
must be compared regarding their curvilinear distance to
the threshold rather than flight time since aircrafts do not
operate at same speeds. Besides, in FPCA the entire interval is
usually studied. However, in our methodology we propose to
recursively apply the whole process on smaller intervals with a
sliding window in order to give a local non-compliance score.

B. Introduction to Data Clustering

Data clustering, consists in grouping similar data samples
together into subsets. The inputs are unlabeled data, and the
idea is to find underlying information to classify those data
[31].

A way to perform a data clustering is to solve an opti-
mization problem that minimises the intra-class variance and
maximises the inter-class variance over the possible clusters. In
our paper, a clustering algorithm called Hierarchical Density-
Based Spatial Clustering of Applications with Noise (HDB-
SCAN) will be used. This algorithm extends the DBSCAN
clustering method [32] by converting it into a hierarchical
clustering algorithm. It finally extracts a flat clustering based
on the stability of clusters [33]. The algorithm is divided into
five steps. It first transforms the space according to the density.
Secondly, it builds the minimum spanning tree of the distance
weighted graph. Thirdly, a cluster hierarchy of the connected
components is constructed. Then, the cluster hierarchy based
on minimum cluster size is condensed. Finally, it extracts the
stable clusters from the condensed tree.

An extension to data clustering is called anomaly or outliers
detection. After the clustering process, it is possible to consider
as outlier the elements that fall outside the clusters, i.e. the
elements that are far from any cluster. An algorithm called
Global-Local Outlier Score from Hierarchies (GLOSH) gives a
score between 0 and 1 for outliers [34]. It compares the density
of a point to the density of any points in the associated current
and child cluster. Points with substantially lower density than
the cluster density are likely to be considered outliers.

In our method, hierarchical clustering and outlier scoring
will be applied to the decomposition coefficients on the
principal component basis of the FPCA to compute the local
compliance coefficient.

III. COMPLIANCE CRITERIA EXTENSION

In this section we introduce the extension and the new
compliance features we have created. On all the figures, colors
are defined as the following. Green is compliant, orange is a
warning, red is critical, blue corresponds to the study interval
and gray means that it does not belong to the study interval.
The current situation and the conformity limits for trajectories
from ELVIRA NCA module [35] are the baseline for our
features. Indeed, the chevrons, the 30 seconds level-off flight
and the glide path define geometric limits.

In order to make the notion of compliance more restrictive,
reducing the number of false alarms, we now consider two
limits. A warning limit and a critical limit. For both altitude
and lateral feature, the limits defined in the ELVIRA module
become the warning limit. Besides, we introduce the critical
limit for the altitude feature as the low altitude of the GIFA’s
3D volumes. For the horizontal feature, the critical limit, is
defined as twice the warning limit. Both limits are represented
in Figure 3

The false alarms are possibly due to the lack of features
like energetic features for example. In the following, we
present complementary features. In operations, an aircraft is
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Fig. 3: Actual compliance criteria of NCA Module: horizontal
limit (top) and vertical limit (bottom)

supposed to attend a level-off flight before intercepting glide
slope. Consequently, we introduce a new feature Glide Angle
(GA), which corresponds to the slope to join the touchdown
point from current position. Considering the earth as a sphere
implies an altitude correction to compute the feature. This is
illustrated in figure 4. To give an example, with 11NM distance
from the runway threshold, there is an altitude difference of
107ft. The feature is illustrated for a trajectory in figure 5.

Fig. 4: Illustration of the altitude correction [36]

To define a warning limit and a critical limit, we computed

the slope angle of intercepting Glide Slope at 4350ft and
4700ft instead of 4000ft at FAP. The warning limit (resp.
critical limit) for the Glide Angle feature is consequently set to
0.4° (resp. 0.7°) up to the published glide angle and increases
linearly to 0.9° (resp 1.2°) approaching the touchdown point
to consider the latent fluctuation of the tangent function used
to compute the feature nearby the touchdown point.

Fig. 5: New criteria : Glide Angle compliance

Finally, we introduced two other features, the Ground Speed
(GS) and the Vertical Speed (VS) to complete the energy
analysis of the trajectories. The nominal, warning and critical
limits are based on operational on-glide deceleration issues.
The nominal operational on-glide deceleration in the literature
is between 10 and 20 kts/NM [37]. Consequently, we consider
nominal a constant ground speed deceleration of 15 kts/NM
from the Chevrons to the stabilization height at 1000ft with the
aircraft computed approach speed vapp (average speed over the
last 3NM). For the warning limit, we consider a 17.5 kts/NM
on-glide deceleration from Chevrons to vapp + 15kts at 1000
ft and for the critical limit a 20 kts/NM deceleration from
Chevrons to vapp+30kts at 1000 ft. Those limits are illustrated
in Figure 6.

Regarding the vertical speed, while on-glide, the aircraft
vertical speed is directly linked to the ground speed. Besides,
we consider that before the FAP, the vertical speed is not
supposed to change since the aircraft has to operate a level-off
flight. We finally consider as warning (resp. critical) a vertical
speed 50% (resp. 100%) greater than the nominal vertical
speed after the stabilization height.

IV. ATYPICAL FLIGHTS DETECTION METHODS

In this paper, the data we used is composed of 20746 landing
radar records at CDG Airport during December 2011. The
radar records are composed with the longitude, the latitude,
the altitude, the ground speed, the time, the vertical speed, the
heading, and the aircraft type. Radar information are recorded
every 4 seconds.

A. Energy Motivations

The real problem for aircraft to land is an excess of energy.
Excess of energy corresponds to situations where an aircraft is

4



Fig. 6: New criteria : Ground Speed (top) and Vertical Speed
(bottom) function of the curvilinear distance

for example too high on glide owing to GIFA resulting in high
potential energy, or with an overspeed owing to down wind in
final approach or late power reduction resulting in high kinetic
energy. By using the total energy we have a tool that is able
to detect both cases of non-compliance.

The main idea is to use the total energy of the aircraft in
the runway coordinate system. Radar records do not contain
aircraft mass. Since, our study only concerns last phases of
flight before landing, we assume that the mass is constant.
Therefore, we compute the total specific energy ET (energy
per unit mass) as:

ET = Ec + Ep; Ec =
1

2
· (G2

s + V 2
z ); Ep = g · h

Where Ep is the specific potential energy, Ec the specific
kinetic energy, Gs is the ground speed, Vz the vertical speed,
h the height and g the gravity constant.

Our input is the total energy function of the curvilinear
distance.

B. Algorithm

Our method consists of applying the following process on
a sliding window (defined by its width ν and its shift δ)
recursively. First, apply a smoothing spline decomposition and

a FPCA over the pieces of trajectories. Then, project over the
k first principal components as representation of each piece
of trajectory. Finally, apply a clustering to detect outliers far
from every cluster. The HDBSCAN algorithm was used to
perform the clustering. The Global-Local Outlier Score from
Hierarchies (GLOSH) is used to give an outlier scoring. The
value given is between 0 for a nominal sample and 1 for an
outlier.

With this algorithm, each shift of the sliding window
is attributed a coefficient. To represent and give a smooth
representation of the coefficient, we use an averaging process
to give the discrete score. The local compliance coefficient at a
fix point for example 10NM is computed by averaging all the
sliding window shift coefficients containing the 10NM point.

Finally, the detection phase is done by computing the length
of the maximum interval for which compliance coefficients
are over a threshold τ . If the maximum interval length is
greater than a reference length λ, the trajectory is considered
as atypical.

C. Why a sliding window is used ?

The first question is, why do we apply a sliding window
and not using the whole trajectory as usually done in FPCA ?
To answer this question we applied the process on the whole
trajectory and discuss the pros and cons in the following.

We used radar records at CDG Airport during December
2011. We focus on the last 15 nautical miles (18NM to 3NM
from the threshold) before stabilization of A320 landing on
runway 26L. First, using the whole trajectory implies only
to use the threshold τ to seperate nominal from atypical
trajectories. In this illustration, we fixed τ such that we detect
the most distant percentile of trajectories.

The detected atypical flights are analysed using the geomet-
ric limits defined in Section III. Over the 20 flights detected,
there are 7 flights that were too high and did not respect
level flight, 9 flights with an overspeed. Besides, we notice
a huge Glide Interception From Above shown in Figure 7.
This method also detects interesting cases. First, a flight with
very strong speed reduction at 9NM and with a big lateral
deviation. Second, a flight that intercepts the glide at 3000ft
instead of 4000ft. Then, a flight with a low speed at 5NM
which speed up back to the approach speed. Finally, a landing
after a go around, which therefore started with a low speed
and had a small overspeed at the beginning of the glide slope.

Using the whole interval presents different limitations. First,
τ is a parameter that was fix based on the percentile the most
distant and is dataset dependent. Besides, we considered as
atypical, outliers with an important score. The distribution of
the scores obtained with our process is shown on top of Figure
8. Score near 1 are in red, and score near 0 are in green.
If we compare this distribution with the labels obtained by
the energetic features that we develop previously, it shows
that the outlier coefficient is not always appropriated since the
warning and critical trajectories seem to be located on the right
side of the distribution. A possible alternative could be to use
a supervised learning model, using the resulting features as
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Fig. 7: A GIFA detected as outlier by the FPCA detection
method

labels. Then, to consider the outlier score to be a function of
the probability given by the supervised learning method to be
in the class. An illustration is shown on bottom of Figure 8.

Fig. 8: Representation of the outlier coefficient (top) and of
the supervised classification with a simple learning model
(bottom)

Besides, when the principal component analysis is made
over the whole trajectory, local events could have been hidden
by the process. All these reasons motivate the sliding window

FPCA. In our context, it will give an outlier score for each
interval, which can be interpreted as a local compliance score.

D. Hyperparameters and inherent effects

We must point out the inherent effects of the sliding win-
dow width and the coefficient computation. First, the sliding
window width must be selected properly. If it is too short, we
will only detect noise, and if it is too large, we will not detect
local events. Then, the computation uses an average over all
the intervals containing the point. This implies a smoothness of
the compliance coefficient but also a decrease of the maximum
value and a possible delay to change from atypical to nominal
and inversely. It implies possible problems to generalize in
a real-time situation. Finally, the detection rule also implies
hyperparameters that must be fixed properly.

We underline that our method is made with different hy-
perparameters. Those parameters and their influence will be
studied in future works. The motivation of this paper is to
present a methodology and some first results.

V. CASE STUDY ANALYSES

In this subsection, we present the results we obtained for
a fix configuration of our algorithm over specific situations.
We selected a 2NM sliding window, which corresponds to
a flight of around 30s, and a shift of 0.2NM (around the
radar refresh time). The compliance coefficient of a point
is obtained by averaging all the coefficients over the sliding
windows that contain the point. The threshold τ was fixed at
0.6 and the reference length λ to 2NM, which corresponds
to the sliding window width. For the FPCA, we used the 3
first principal components coefficients. Finally, we used 10
minimum samples per cluster in HDBSCAN.

a) Continuous Descent Approach (CDA): CDAs are sit-
uations where an aircraft operates a continuous descent and
therefore does not attend the level-off flight. The geometric
limits will always notify the situation with an altitude deviation
warning since the flight overpass the altitude limits designed
for the level-off flight. Nevertheless, it does not present any
safety issue since it is a known procedure. The only possible
issue with CDA is over-energy owing to over speed. We
wanted to analyse how our methods deal with this kind of
situations.

We consider 30 flights that intercepted the glide slope at
an altitude above the published interception altitude, and then
proceeded a CDA. For all the flights that presented a nominal
speed none is considered as atypical. It means that our method
does not detect abnormal energetic behaviour. Nevertheless,
for those with a high ground speed like the flight illustrated in
Figure 9, which has a ground speed around 250kts at FAP, the
sliding window detect an overenergy. The energy was finally
dissipated but before the FAP it shows that it was a potential
dangerous situation.

Consequently, our methods seem to be relevant to study
CDA. Indeed, only approach with high speed are considered
as atypical.
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Fig. 9: Ground speed (Top) and Sliding Window Energy Com-
pliance Score (Bottom) of a Continuous Descent presenting an
high ground speed around FAP

b) Glide Interception From Above: Other interesting
events to analyse are GIFAs. In the dataset, there are 6 cases
of GIFAs. The result obtained for the GIFA represented in
Figure 7 is shown in Figure 10. The sliding window method
is really efficient since the atypical behaviour is well localized
before 6NM. The results are similar for the 6 cases.

Our method is efficient to detect important GIFAs. We
need to underline an aspect of our method. Small GIFAs
like bumpy profiles (flights which attend a level-off flight
on glide to decelerate for example), which means a potential
energy excess, might be counterbalanced by a low ground
speed. Nevertheless, this is coherent since the non-compliance
induced by the excess of altitude is averaged by the low speed
in the energetic point of view.

c) Ground Speed Warning: We now focus on flights
which had a ground speed warning with the geometric fea-
tures. A typical example is shown in Figure 11. The aircraft
maintained a ground speed of 210 kts untill 6NM and finally
reduced speed joining approach speed apparently after stabi-
lization. For all these situations, the sliding window presents
a large Non Compliance area for the last nautical miles and
flight are detected as atypical.

Fig. 10: Sliding Window Energy Compliance Score over a
GIFA

Fig. 11: Ground speed (Top) and Sliding Window Energy
Compliance Score (Bottom) of a Ground Speed Warning flight

d) Nominal Flight: Finally, we want to make sure nomi-
nal flights without any non-compliant aspects are considered as
nominal. Over 1270 nominal flights, only 10 are considered as
non compliant by the algorithm. Over the 10 flights, 7 flights
presented a low ground speed on final approach possibly owing
to the wind, and 3 presented a high speed and altitude before
FAP and therefore a very high total energy.
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VI. CONCLUSIONS

In this paper we presented an atypical flight detection
method based on FPCA to enhance safety in flights approach
and landing. The results of our method were compared to
geometric features built with operational limits and analysed
on typical flight approach patterns. Our method detects and
localizes properly different type of abnormal energy situations.
Nevertheless, we want to underline some limitations. An
inappropriate sliding window size may induce changes in the
results. Besides, local events such as brutal changes in the
trajectory behaviour may be detected without being relevant
safety issues.

Future works will focus on analysing our algorithm hyper-
parameters behaviour. Then, on developing a complete post-
operational analysis tool based on our methodologies. Besides,
we want to use those methods to develop a real-time detection
tool using the result of our algorithms to label the data. In
addition we are currently working on a novel data generation
method in order to enhance our atypical flights database.
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