B. D. Trapp, J. Peterson, R. M. Ransohoff, R. Rudick, S. Mrk et al., Axonal transection in the lesions of multiple sclerosis, N. Engl. J. Med, vol.338, issue.5, p.278285, 1998.

A. E. Miller and R. W. Rhoades, Treatment of relapsing-remitting multiple sclerosis: current approaches and unmet needs, Curr. Opin. Neurol

F. De-angelis, D. Plantone, and J. Chataway, Pharmacotherapy in Secondary Progressive Multiple Sclerosis: An Overview, vol.32, p.499526, 2018.

J. Q. Su and J. S. Liu, Linear Combinations of Multiple Diagnostic Markers, Journal of the American Statistical Association, vol.88, issue.424, p.13501355, 1993.

M. S. Pepe and M. L. Thompson, Combining diagnostic test results to increase accuracy, Biostatistics, vol.1, issue.2, p.123140, 2000.

C. Liu, A. Liu, and S. Halabi, A min-max combination of biomarkers to improve diagnostic accuracy, Stat Med, vol.30, issue.16, 2011.

L. Kang, A. Liu, and L. Tian, Linear combination methods to improve diagnostic/prognostic accuracy on future observations, Stat Methods Med Res, vol.25, issue.4, p.13591380, 2016.

J. Yin and L. Tian, Optimal linear combinations of multiple diagnostic biomarkers based on Youden index, Stat Med, vol.33, issue.8, p.14261440, 2014.

I. Kouskoumvekaki, Z. Yang, S. O. Jnsdttir, L. Olsson, and G. Panagiotou, Identification of biomarkers for genotyping Aspergilli using non-linear methods for clustering and classification, BMC Bioinformatics, vol.9, p.59, 2008.

Y. Huang and Y. Fong, Identifying optimal biomarker combinations for treatment selection via a robust kernel method, Biometrics, vol.70, issue.4, p.891901, 2014.

T. Xu, Y. Fang, A. Rong, and J. Wang, Flexible combination of multiple diagnostic biomarkers to improve diagnostic accuracy, BMC Med Res Methodol, vol.15, 2015.

M. D. Steenwijk, Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant, Brain, vol.139, issue.1, p.115126, 2015.

K. Schmierer, F. Scaravilli, D. R. Altmann, G. J. Barker, and D. H. Miller, Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain, Ann. Neurol, vol.56, issue.3, p.407415, 2004.

M. Cercignani, G. Iannucci, and M. Filippi, Diffusion-weighted imaging in multiple sclerosis, Ital J Neurol Sci, vol.20, issue.5, pp.246-249, 1999.

M. Rovaris, Diffusion MRI in multiple sclerosis, Neurology, vol.65, issue.10, p.15261532, 2005.

P. S. Tofts, G. R. Davies, and J. Dehmeshki, Histograms: Measuring Subtle Diffuse Disease, in Quantitative MRI of the Brain, p.581610, 2004.

J. Dehmeshki, A. C. Ruto, S. Arridge, N. C. Silver, D. H. Miller et al., Analysis of MTR histograms in multiple sclerosis using principal components and multiple discriminant analysis, Magn Reson Med, vol.46, issue.3, 2001.

J. Dehmeshki, N. C. Silver, S. M. Leary, P. S. Tofts, A. J. Thompson et al., Magnetisation transfer ratio histogram analysis of primary progressive and other multiple sclerosis subgroups, Journal of the Neurological Sciences, vol.185, issue.1, p.1117, 2001.

L. Paul, D. Debruyne, D. Bernard, D. M. Mock, and G. L. Defer, Pharmacokinetics and pharmacodynamics of MD1003 (high-dose biotin) in the treatment of progressive multiple sclerosis, Expert Opin Drug Metab Toxicol, vol.12, issue.3, p.327344, 2016.

F. Sedel, High doses of biotin in chronic progressive multiple sclerosis: a pilot study, Mult Scler Relat Disord, vol.4, issue.2, p.159169, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01251510

A. Tourbah, MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: A randomised, double-blind, placebocontrolled study, Multiple Sclerosis Journal, vol.22, issue.13, p.17191731, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01414958

O. Querbes, Early diagnosis of Alzheimers disease using cortical thickness: impact of cognitive reserve, Brain, vol.132, p.20362047, 2009.

S. E. Jones, B. R. Buchbinder, and I. Aharon, Three-dimensional mapping of cortical thickness using Laplaces equation, Hum Brain Mapp, vol.11, issue.1, p.1232, 2000.
DOI : 10.1002/1097-0193(200009)11:1<12::aid-hbm20>3.0.co;2-k

URL : http://www.stat.wisc.edu/~mchung/teaching/MIA/reading/SBM.thickness.laplace.2000.pdf

N. Toussaint, J. Souplet, and P. Fillard, MedINRIA: Medical Image Navigation and Research Tool by INRIA, presented at the Proc. of MICCAI07 Workshop on Interaction in medical image analysis and visualization, 2007.

H. Abdi, L. J. Williams, and D. Valentin, Multiple factor analysis: principal component analysis for multitable and multiblock data sets, Wiley Interdisciplinary Reviews: Computational Statistics, vol.5, issue.2, p.149179, 2013.
DOI : 10.1002/wics.1246

URL : https://hal.archives-ouvertes.fr/hal-01259094

F. Husson, J. Josse, and J. Pags, Principal component methodshierarchical clustering-partitional clustering : why would we need to choose for visualizing data ?, 2010.

O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Prez, and I. Perona, An extensive comparative study of cluster validity indices, Pattern Recognition, vol.46, issue.1, p.243256, 2013.
DOI : 10.1016/j.patcog.2012.07.021

P. Robert and Y. Escoufier, A Unifying Tool for Linear Multivariate Statistical Methods: The RV-Coefficient, vol.25, p.257, 1976.
DOI : 10.2307/2347233

D. Arnold, MD1003 in progressive multiple sclerosis: 24-month brain MRI results of the MS-SPI trial, presented at the 7th Joint ECTRIMSACTRIMS Meeting, 2017.

G. Iannucci, L. Minicucci, M. Rodegher, M. P. Sormani, G. Comi et al., Correlations between clinical and MRI involvement in multiple sclerosis: assessment using T1, T2 and MT histograms, Journal of the Neurological Sciences, vol.171, issue.2, p.121129, 1999.
DOI : 10.1016/s0022-510x(99)00259-2

G. Iannucci, C. Tortorella, M. Rovaris, M. P. Sormani, G. Comi et al., Prognostic Value of MR and Magnetization Transfer Imaging Findings in Patients withClinically Isolated Syndromes Suggestive ofMultiple Sclerosis at Presentation, American Journal of Neuroradiology, vol.21, issue.6, p.10341038, 2000.