Approximation of Densities on Riemannian Manifolds

Abstract : Finding an approximate probability distribution best representing a sample on a measure space is one of the most basic operations in statistics. Many procedures were designed for that purpose when the underlying space is a finite dimensional Euclidean space. In applications, however, such a simple setting may not be adapted and one has to consider data living on a Riemannian manifold. The lack of unique generalizations of the classical distributions, along with theoretical and numerical obstructions require several options to be considered. The present work surveys some possible extensions of well known families of densities to the Riemannian setting, both for parametric and non-parametric estimation.
Type de document :
Article dans une revue
Entropy, MDPI, 2019, 21 (1), pp.43. 〈10.3390/e21010043〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-02002521
Contributeur : Alice Le Brigant <>
Soumis le : jeudi 31 janvier 2019 - 17:37:39
Dernière modification le : vendredi 8 février 2019 - 17:27:16

Fichier

entropy-21-00043-v2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Données associées

Collections

Citation

Alice Le Brigant, Stéphane Puechmorel. Approximation of Densities on Riemannian Manifolds. Entropy, MDPI, 2019, 21 (1), pp.43. 〈10.3390/e21010043〉. 〈hal-02002521〉

Partager

Métriques

Consultations de la notice

23

Téléchargements de fichiers

9