P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wachter, Branching and bounds tightening techniques for non-convex MINLP, Optimization Methods and Software, vol.24, pp.597-634, 2009.

G. K. Das, S. Das, S. C. Nandy, and B. P. Sinha, Efficient algorithm for placing a given number of base stations to cover a convex region, Journal of Parallel and Distributed Computing, vol.66, pp.1353-1358, 2006.

R. Fortet, Applications de l'algèbre de Boole en recherche opérationelle, Revue Française de Recherche Opérationelle, vol.4, pp.17-26, 1960.

R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, 2002.

A. Heppes and J. B. Melissen, Covering a rectangle with equal circles, Periodica Mathematica Hungarica, vol.34, pp.65-81, 1997.

A. Kazakov, A. Lempert, and P. Lebedev, Congruent circles packing and covering problems for multi-connected domains with non-euclidean metric, and their applications to logistics, Mathematical and Information Technologies MIT-2016, 2016.

J. B. Melissen and P. C. Schuur, Improved coverings of a square with six and eight equal circles, Electronic J. Combin, vol.3, 1996.

J. B. Melissen and P. C. Schuur, Covering a rectangle with six and seven circles, Discrete Applied Mathematics, vol.99, pp.149-156, 2000.

K. J. Nurmela and P. R. Ostergard, , 2000.

E. Palatinus and B. Bánhelyi, Circle covering and its applications for telecommunication networks, Proceedings of the 8th International Conference on Applied Informatics, pp.255-262, 2010.

Y. G. Stoyan and V. M. Patsuk, Covering a compact polygonal set by identical circles, Computational Optimization and Applications, vol.46, pp.75-92, 2010.

T. Tarnai, . Zs, and . Gáspár, Covering a square by equal circles, Elm. Math, vol.50, pp.167-170, 1995.