Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Communication dans un congrès

Passenger-Centric Metrics for Air Transportation Leveraging Mobile Phone and Twitter Data

Abstract : This paper aims at presenting a detailed analysis of domestic air passengers behavior during a major air-traffic disturbance, from two complementary passenger-centric perspective: a passenger mobility perspective and a passenger social media perspective. By leveraging over 5 billion records of mobile phone location data per day from a major carrier in the United States, passenger mobility can be reliably analyzed, no matter which airline the passengers fly on or which airport they fly to and from. Such information is currently unavailable to the major aviation stakeholders at such scale and can be used to establish performance benchmarks from a passenger's perspective. Combining it with a Twitter analysis provides a more detailed and passenger-focused analysis than the traditional flight-centric measurements used to evaluate the overall system performance. More generally, these two passenger-centric analysis could be implemented in real-time for a daily evaluation of the Air Transportation System, enabling a faster analysis of the impact of major disruptions, whether due to meteorological conditions or system failures.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-02078088
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : jeudi 28 mars 2019 - 11:13:00
Dernière modification le : mercredi 3 novembre 2021 - 06:41:12
Archivage à long terme le : : samedi 29 juin 2019 - 13:10:30

Fichier

pax_twitter_paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Aude Marzuoli, Philippe Monmousseau, Eric Féron. Passenger-Centric Metrics for Air Transportation Leveraging Mobile Phone and Twitter Data. ICDMW 2018, IEEE International Conference on Data Mining Workshops, Nov 2018, Singapour, Singapore. ⟨10.1109/ICDMW.2018.00091⟩. ⟨hal-02078088⟩

Partager

Métriques

Consultations de la notice

121

Téléchargements de fichiers

343