F. Chollet, , 2015.

R. Eldan and O. Shamir, The power of depth for feedforward neural networks, 2016.

A. Fawzi, O. Fawzi, and P. Frossard, Analysis of classifiers' robustness to adversarial perturbations, Machine Learning, vol.107, issue.3, pp.481-508, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01992078

C. Finlay, A. Oberman, and B. Abbasi, Improved robustness to adversarial examples using lipschitz regularization of the loss, 2018.

H. Gouk, E. Frank, B. Pfahringer, and M. Cree, Regularisation of neural networks by enforcing lipschitz continuity, 2018.

D. Harrison and D. Rubinfeld, Hedonic prices and the demand for clean air, J. Environ. Economics and Management, vol.5, pp.81-102, 1978.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2015.

J. Z. Kolter and E. Wong, Provable defenses against adversarial examples via the convex outer adversarial polytope, ICML, 2018.

A. Oberman and J. Calder, Lipschitz regularized deep neural networks converge and generalize, 2018.

M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-dickstein, On the expressive power of deep neural networks, Proceedings of the 34th International Conference on Machine Learning, vol.70, pp.2847-2854, 2017.

A. Raghunathan, J. Steinhardt, and P. S. Liang, Certified defenses against adversarial examples, 2018.

U. Shaham, Y. Yamada, and S. Negahban, Understanding adversarial training: Increasing local stability of supervised models through robust optimization, Neurocomputing, vol.307, pp.195-204, 2018.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, Journal of Machine Learning Research, vol.15, pp.1929-1958, 2014.

P. C. Team, Python: A dynamic, open source programming language, python software foundation, 2015.

A. Virmaux and K. Scaman, Lipschitz regularity of deep neural networks: analysis and efficient estimation, Advances in Neural Information Processing Systems, 2018.

F. Wen, L. Chu, P. Liu, and R. C. Qiu, Nonconvex regularization based sparse and low-rank recovery in signal processing, statistics, and machine learning, 2018.

H. Xu, C. Caramanis, and S. Mannor, Robustness and regularization of support vector machines, J. Mach. Learn. Res, vol.10, pp.1485-1510, 2009.

Y. Yoshida and T. Miyato, Spectral norm regularization for improving the generalizability of deep learning, 2018.

M. S. Tsuzuku and I. Sato, Lipschitz-margin training: Scalable certification of perturbation invariance for deep neural networks, 2018.