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Reducing Computational Cost in the Invariant
Unscented Kalman Filtering For Attitude Estimation

Jean-Philippe Condomines, Gautier Hattenberger

Abstract—This article proposes a new formulation to derive
the invariant unscented Kalman filter (IUKF) algorithm for
attitude estimation problem, where both state and sigma-point
are considered as a transformation group parametrization of
the filter. The detailed IUKF equations are presented in this
article. The filter equations relie on the same ideas as the usual
Unscented Kalman Filter (UKF), but it uses a geometrically
adapted correction term based on an invariant output error.
The specific interest of the proposed formulation is that only
the invariant state estimation errors between the predicted state
and each sigma point must be known to determine the predicted
outputs errors. As we have already computed the set of invariant
state errors during the prediction step, the computation cost to
find the covariance matrix of the invariant state estimation in
the update step is greatly reduced.

Index Terms—unscented Kalman filters (UKF), invariant fil-
tering, attitude estimation, extended Kalman filter (EKF).

I. INTRODUCTION

THE attitude estimation problem for nonlinear dynamic
system is an important research topic and is a major

concern in the aerospace engineering community ([1], [2], [3],
[4], [5]). The unscented Kalman filter (UKF) is an efficient
derivative free filtering algorithm for computing approximate
solutions to discrete-time non-linear optimal filtering problems
such as the estimation of Attitude and Heading reference
System (AHRS) for autonomous systems. It has become
prevalent as an alternative to the extended Kalman filter
(EKF) that improves estimation and spares the pratictioner
the computation of Jacobians. However, in its original form,
the UKF cannot be directly applied to invariant filtering
problems, where the linear estimation error and the linear
predicted output error traditionaly used are defined as invariant
state estimation error and invariant output error. Within this
framework, the IUKF detailed nonlinear equations applied to
attitude estimation problems can be analysed to reduce the
computational cost.

This article focuses on a new formulation of the Invariant
UKF-like estimator for Attitude estimation by analayzing the
IUKF detailed nonlinear equations. Our main results, Theo-
rems 1 and 2 allows to find a parametrization group reducing
the computation complexity of the IUKF algorithm. A more
detailed presentation of the contributions of this article is given
in Section I-D.

A. Literature review

Various works has been conducted on nonlinear invariant
observers over the past decade, most notably by N. Aghannan,
P. Rouchon, S. Bonnabel, and E. Salaun ([6], [7], [8], [9],
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[10], [11]), who developed a constructive method based on a
combination of differential geometry and group theory that can
be used to create nonlinear filters for nonlinear system-state
estimation problems. This last decade was characterized by
the introduction of new techniques that question the classical
definition of the estimation error traditionally used by methods
of designing nonlinear observers. The first research based on
a geometric approach was conducted by ([12], [13], [14],
[15]). Their approach revolves around geometric Lie groups
(quaternions, rotation matrices, etc.). Inspired by prior work
by Krener and Isidori, it exploits the invariance of some
nonlinear systems under certain geometric transformations
(rotation, translation, etc.) to construct an observer that per-
forms significantly better than observers defined locally around
an equilibrium point. The various results established by S.
Bonnabel ([7], [8], [16], [17], [18]) allowed a theory of
invariant observers to be developed for a large class of systems
with symmetries. The linearization is no longer performed
around an equilibrium point but around the identity element
of a group. This enlarges the domain of convergence of the
estimate and gives simplified expressions for the dynamics of
the estimation error. It requires however to tune an important
number of setting parameters potentially when computing
estimation gains, which can be cumbersome for complex
system modeling. Thereafter, researchers have tried to de-
velop more generic procedures which facilitate the design
of invariant observers, by performing an automatic tuning of
the correction gains which occurs in any filtering equation
associated with nonlinear state observer. Regarding the state
of the art, there exist two major techniques called Kalman-
based invariant observers : the Invariant Kalman filter such
as Invariant Extended Kalman Filter – IEKF or more recently
the Unscented Kalman-based Invariant filter and the Invariant
Particle Filter – IPF. The IEKF ([19], [17], [20], [21], [22])
is characterized by a larger convergence domain, due to the
exploitation of systems’ symmetries within the estimation
algorithm (i.e., within filter equations and gains computation),
and present very good performances in practice. An important
well known drawback in this method is that it requires to
linearize the system of differential equations which govern the
invariant state estimation error dynamics. Such an operation
appears suitable for simple system modeling but for more
complex system modeling, this linearization may be difficult to
carry out. To overcome this problem, the UKF algorithm based
on invariant framework has been recently proposed in ([23],
[24], [25], [26], [27]). It has been proved in these bibliograph-
ical references that an Invariant UKF-like estimator could be
designed by using either a compatibility condition or a specific
case in order to make equation more explicit for the special
case of the attitude estimation problem. In a similar spirit to
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research from a few years ago on the IEKF (Invariant Extended
Kalman Filter) algorithm, the correction gains of this estima-
tor, which are specifically designed to be invariant, may be
deduced by performing the same computational steps as UKF-
type filtering (either in factorized or non-factorized form).
However, before we can integrate the procedure for computing
the correction gains (an algorithm borrowed from unscented
Kalman filtering) with invariant observer theory, a series of
methodological developments are required, as described in this
article. Similarly, an extension of nonlinear invariant observers
has been made for Rao-Blackwellized Particle Filters (PF) that
can be used for nonlinear state estimation ([29], [30], [31]).
Invariant PFs (IPF) rely on the notion of conditional invariance
which corresponds to classical system invariance properties,
but once some state variables are assumed to be known. It
is those known states that will be sampled throughout the
estimation process. It is noteworthy that, for the obtained IPF,
the Kalman gains computed are identical for all particles which
drastically reduces the computational effort usually needed to
implement any PF.

B. Links with Attitude and Heading for Autonomous Systems

New applications in aerial robotics popularized invariant
filtering. Many recent progresses in the miniaturization of
sensors have led to the design of small and cheap integrated
navigation system hardwares (complete IMU: Inertial Mea-
surement Unit, GPS: Global Positioning System module, etc.),
which have, for their part, contributed to boost significantly
the market of mini-UAVs (Unmanned Air Vehicles) over
the last decades, making them more accessible to everyone.
Nevertheless, this accessibility is frequently inconsistent with
good measurement performances. For instance, the GPS mod-
ules used commonly in the Paparazzi autopilot 1 deliver an
absolute position with an average accuracy of 5m, up to 10m
under certain flight conditions. Therefore, a need for multiple
sensors data fusion arises to develop robust and powerful
advanced control strategies for mini-UAVs that can be viewed
as complex autonomous system. So much so that full state
(or estimated state) feedback designs (cf. LQG/LTR syntheses)
provide full authority to control efficiently in terms of stability
and performances UAVs for accomplishing various missions.
To this aim, nonlinear estimation offers several well-proven
algorithmic techniques which permit to recover an acceptable
level of accuracy on some key flight parameters (anemometric
angles, orientation/attitude, linear and angular speeds, position,
etc.) for mini-UAVs closed-loop handling qualities. Many
bibliographical references [20], [16], [32] tackle this specific
issue exploiting nonlinear invariant observers in the domain
of autonomous systems in robotics for solving nonlinear
Attitude and Heading Reference System (AHRS) estimation
problems from both inertial/vision multisensors data fusion.
Both properties and capabilities of this peculiar class of
method make any invariant observer-based estimation scheme
dedicated to dynamical system navigation appealing, espe-
cially when there exists, in addition, hardware redundancy. In
that case, autonomous vehicles can reach an acceptable level of

1Paparazzi project at: https://blog.paparazziuav.org

robustness w.r.t. degraded operating conditions for example in
GPS-denied environments or multiple sensor faults. Using an
invariant observer-based algorithm to merge an extended (and
potentially redundant) set of measurements can still provide
good performances and convergence properties in such situta-
tions. Another interesting application of invariant observers
theory can be found in [34]. It reformulates the standard
Linear Quadratic Gaussian (LQG) controller synthesis into an
Invariant LQG (ILQG) design by making use of an IEKF
for the observer part. The resulting controller appears to be
more robust and less sensitive to both estimated trajectory and
misestimates.

C. About the standard IUKF computational Complexity
The computational complexity of the standard IUKF can be

seen to be 20% higher than the computational complexity of
the general UKF filter, when compared in terms of calculation
time for both invariant state and measurement errors. When the
state dimension is n, the UKF needs 2n+1 evaluations of the
state and measurement equations when IUKF needs 4n2+2n.
In this paper, we reduce this computational complexity to 2n.

D. Paper’s Organizations and Contributions
Among methods in Section I-A, only a few tried to cus-

tomize equations in order to make them more explicit for the
special case of the Attitude and Heading Reference System
(AHRS) ([27], [33], [35]). But none of them is able to reduce
the computation complexity. This paper focuses on a new
formulation of the Invariant UKF-like estimator for AHRS in
order to reduce this complexity. The contributions of the paper
include :

1) The presentation in Section II of theoretical prerequi-
sities dealing with unscented Kalman filtering where
both invariant state and output error are introduced.
The invariant framework dedicated to unscented Kalman
filter developed in this article is exceedingly convenient
as filter equations can be specialized.

2) The invariant unscented Kalman filter equations are
naturally specialized in Section IV, and the system of
differential equations that described the proposed IUKF
in the benchmarking case of an attitude estimation
system is derived. Our focus is on finding parametization
group that reduce the computational cost of the filter.

3) Finally the compuational results that appear in The-
orem 2 are validated in Section V on the basis of
simulated data generated by dynamic model simulations
describing the free fall of a parafoil.

A comprehensive set of results validate the methodological
principles presented in this article and compare the perfor-
mances reached by the UKF, the standard IUKF and the
developed IUKF dedicated to AHRS named IUKFx. The
invariance properties of the IUKFx algorithm are also visible
on the state estimation errors which enlarge the convergence
boundaries.

II. SOME PRELIMINARIES

This section introduces the unscented Kalman filter this
article is concerned with, as well as the invariant unscented
Kalman filter our results apply to.
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A. Unsented Kalman Filter
The standard UKF framework ([36], [37]) involves estima-

tion of the state xk P Rn of a discrete-time nonlinear dynamic
system,

xk`1 “ fpxk,ukq `wk

yk “ hpxk,ukq ` vk,
(1)

where yk P Rm is the output of the modeled system. vk P
Rm (resp. wk P Rn) refers to the discrete Gaussian process
wk „ Np0,Wkq (resp. observation vk „ Np0,Vkq).

The UKF estimation process starts with the calculation of
the scaled Unscented Transform (UT), in order to pick a
minimal set of sample points, also called sigma points, around
the mean state vector denoted by X , s.t. X p0q

k|k “ x̂k|k. This
calculation provides a set of p2n ` 1q sigma points and also
two series of p2n ` 1q scalar weighting factors, denoted by
tW piq

pmqu and tW piq
pcqu (i P rr 0 ; 2n ss). These sigma points are

then propagated through the nonlinear state fp¨q and output
hp¨q equations, providing a cloud of evolving points. The mean
x̂k|k and covariance Px

k|k of the transformed points are the
computed based on their statistics. The mean and covariance
of the initial state x0 are denoted x̂0 and Px

0 , respectively.
The unscented transform can be seen as a function (or func-

tional) from (f ||h,x̂k,Px
k ) to (x̂k`1|k||ŷk`1|k,P̃x

k`1|k||P̃y
k`1|k)

depending if the unscented transform is applied on the state
or (||) output equation (See appendix B):

px̂k`1|k||ŷk`1|k, P̃x
k`1|k||P̃y

k`1|kq “ UTpf ||h, x̂k,Px
kq. (2)

In terms of the unscented transform UT(¨) the unscented
Kalman filter prediction and update steps can be written as
follows :
‚ Prediction: Compute the predicted state mean x̂k`1|k and

the predicted covariance Px
k`1|k:

rx̂k`1|k, P̃x
k`1|ks “ UTpf, x̂k|k,Px

k|kq
Px
k`1|k “ P̃x

k`1|k `Wk
(3)

‚ Update: Compute the predicted mean ŷk`1|k and co-
variance of the measurement Py

k`1|k , and the cross-
corvariance of the state and measurement Pxy

k`1|k :

rŷk`1|k, P̃
y
k`1|ks “ UTph, x̂k`1|k,Px

k`1|kq
Py
k`1|k “ P̃y

k`1|k `Vk

Pxy
k`1|k “

2nÿ

i“0

W
piq
pcqpx̂piqk`1|k ´ x̂k`1|kq

ˆ pŷk`1|k ´ ŷ
piq
k`1|kq

(4)
An estimation x̂k`1|k`1 of xk`1 is then computed by the
Kalman filtering equations :

x̂k`1|k`1 “ x̂k`1|k `Kk`1pyk`1 ´ ŷk`1|kq
Px
k`1|k`1 “ Px

k`1|k ´Kk`1P
y
k`1|kK

T
k`1,

(5)
where Kk`1 “ Pxy

k`1|k ¨ Py´1

k`1|k and yk`1 is the raw
measurements.

The linear correction pyk`1´ ŷk`1|kq is weighted by the gain
Kk`1 in such a way as to minimize the covariance of the state
estimation error pxk`1 ´ x̂k`1|kq. Numerical efficient square
root versions of the UKF are presented in [38].

B. Invariant Unscented Kalman filtering
This subsection is an extention of first research dealing with

IUKF [26]. The motivation is using the udapte equations of
the IUKF algorithm we can specialize each step to make them
more explicit in Section IV. If the dynamics of the observed
system have invariance properties (symmetries) such as fp¨q
is G-invariant and hp¨q is G-equivariant (see [39] for details),
we cannot directly construct an estimator of the system state
with analogous properties directly from the basic equations of
the UKF algorithm. For convergence, it would be extremely
desirable for any candidate estimator filters to satisfy the same
invariance properties as the system itself, in the same spirit as
the invariant observers of the IEKF algorithm. To achieve this,
IUKF algorithm adapts the UKF algorithm so that it yields an
invariant estimator. From the same principles and computation
steps as the UKF algorithm, a natural reformulation of the
equations aiming to adapt the method for estimation in an
invariant setting can be obtained by redefining the error terms
used of the standard algorithm. The linear state error pxk`1´
x̂k`1|kq, the linear predicted output error pŷk`1|k ´ ŷ

piq
k`1|kq

used in Py
k`1|k and pyk`1 ´ ŷk`1|kq conventionally used in

Eq.(5) do not preserve any of the symmetries and invariance
properties of the system. Instead, we consider in the IUKF
algorithm the following invariant state error2 and predicted
output error on Lie group G such as @g P G ,@i P rr 0 ; 2n ss :

ηpxk`1, x̂k`1|kq “ x´1
k`1x̂k`1|k

Epŷk`1,g, ŷ
piq
k`1|kq “ ρgpŷk`1q ´ ρgpŷpiqk`1|kq

(6)

Where x´1
k`1 is deduced from Cartan moving frame method

and local transformation ρg is defined as for a dynamical
system preserving symmetries [7]. The unscented transfrom
can be re-written in invariant form where the weighted sum
of sigma point are written as equivalent invariant expressions.

Lemma 1. (The invariant state error form of UT) : The
unscented transform can be written with an invariant state
error form as follow :

X k`1|k “ rX p0q
k`1|k X p1q

k`1|k . . . X p2nq
k`1|ks “ fpX k|k,ukq

x̂k`1|k “
2nÿ

i“0

W
piq
pmqX

piq
k`1|k

Px
k`1|k “

2nÿ

i“0

W
piq
pcqpX piq´1

k`1|k ¨x̂k`1|kqpX piq´1

k`1|k ¨x̂k`1|kqT

(7)Lemma 2. (The invariant output error form of UT) : The
unscented transform can be written with an invariant output
error form parametrized by the Lie group g as follow :

Ŷk`1|k “ rŷp0qk`1|k ŷ
p1q
k`1|k . . . ŷ

p2nq
k`1|ks “ hpX k`1|k,ukq

ŷk`1|k “
2nÿ

i“0

W
piq
pmqŷ

piq
k`1|k

Py
k`1|k “

2nÿ

i“0

W
piq
pcqEpŷk`1|k,g, ŷ

piq
k`1|kqET pŷk`1|k,g, ŷ

piq
k`1|kq

(8)
2The group action conincides with left translations (resp. right translations),

see [17] for details.
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Proof. See Appendix C-(A) & C-(B)

The prediction and update steps of the invariant unscented
Kalman filter are the following [26]:
‚ Prediction: The covariance matrix of the state estimation

error leads to a set of p2n ` 1q invariant errors defined
between each sigma point and the predicted state. Thus,
the covariance has now been conceptually redefined in
terms of the invariant state error instead of a linear error
term. This is the most important nuance compared to
classical unscented Kalman filtering. Other than this key
modification, the prediction step is essentially identical
to the original algorithm. Next, we need to modify the
update step accordingly to compute the gain terms.

‚ Update: The update step of the standard UKF al-
gorithm requires more extensive modifications. With
our new definition of the covariance matrix, which is
now associated with the invariant estimation errors, we
need to make the following changes: the calculation
of the predicted covariance of the output y now be-
comes: Py

k`1|k9Epŷk`1|k,g, ŷ
piq
k`1|kq, and the calcula-

tion of predicted cross-covariance between the estima-
tion errors in the state x and the output y is now:
Pxy
k`1|k9

`
ηpX k`1|k, x̂k`1|kq,Epŷk`1|k,g, ŷ

piq
k`1|kq

˘
. An

estimation x̂k`1|k`1 of xk`1 is computed by the invari-
ant Kalman filtering equations : x̂k`1|k`1 “ x̂k`1|k `
Kk`1Epŷk`1|k, x̂k`1|k,yk`1, ωpx̂k`1|kqq
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APPENDIX A
ILLUSTRATIONS

x̃

X p1q

X p2q

X p3q

X p4q
⌘pX p1q, x̃q

⌘pX p2q, x̃q ⌘pX p3q, x̃q

⌘pX p4q, x̃q

ỹ

ỹp1q

ỹp2q

ỹp3q

ỹp4q

EX p1q pỹ, ỹp1qq

EX p2q pỹ, ỹp2qq

EX p3q pỹ, ỹp3qq

EX p4q pỹ, ỹp4qq

hp¨q

x̃

X p1q

X p2q

X p3q

X p4q
⌘pX p1q, x̃q

⌘pX p2q, x̃q ⌘pX p3q, x̃q

⌘pX p4q, x̃q

X p1q

X p2q

X p3q

X p4q

⌘pX p1q, X p2qq
⌘pX p2q, X p1qq

⌘pX p1q, X p4qq
⌘pX p4q, X p1qq

⌘pX p1q, X p3qq
⌘pX p3q, X p1qq

repeat this operation @X piq . . .

find the 4n2 ` 2n

parameters ⌘pX piq, X pjqq

is replaced by:
ˆ

A
B

˙
⇢⌘pX piq,X pjqq

ˆ
A
B

˙

-

2nÿ

j “ 0
j ‰ i

W
pjq
pmq

“ ¨ ‰

Fig. 2: Comparison of standard SR-IUKF and an applied version of SR-IUKF specifically adapted to the AHRS, parametrized
by the sigma points t⌘px̂k`1|k, X piqq{i P rr 0 ; 2n ssu

x̃

X p1q

X p2q

X p3q

X p4q
⌘px̃, X p1qq

⌘px̃, X p2qq ⌘px̃, X p3qq

⌘px̃, X p4qq

ỹ

ỹp1q

ỹp2q

ỹp3q

ỹp4q
Ex̃pỹ, ỹp1qq

Ex̃pỹ, ỹp2qq

Ex̃pỹ, ỹp3qq

Ex̃pỹ, ỹp4qq

hp¨q

x̃

X p1q

X p2q

X p3q

X p4q
⌘px̃, X p1qq

⌘px̃, X p2qq ⌘px̃, X p3qq

⌘px̃, X p4qq
result:

$
’’’&
’’’%

⌘px̃, X p1qq
⌘px̃, X p2qq
⌘px̃, X p3qq
⌘px̃, X p4qq

find the 2n

parameters ⌘px̃, X pjqq

is replaced by:
ˆ

A
B

˙
⇢⌘px̃,X pjqq

ˆ
A
B

˙

-

2nÿ

j “ 0
j ‰ i

W
pjq
pmq

“ ¨ ‰

Fig. 3: Comparison of standard SR-IUKF and an applied variant of SR-IUKF specifically adapted to the AHRS, parametrized
by the predicted state x̂k`1|k “

ÿ

jPrr 0 ; 2n ss
W

pjq
pmq X pjq

k`1|k

Fig. 1: Principle of the standard IUKF approach

By transitivity, it naturally follows that any correction
gains for the state estimation computed using a UKF-
type technique are functions of the invariant output errors
Epŷk`1|k, x̂k`1|k,yk`1, ωpx̂k`1|k). The invariant setting de-
fined for the system also requires us to modify the correction
equations for the predicted state. The additive correction term

now includes: (a) a gain term that depends on the invariants
of the estimation problem; (b) an invariant innovation term.
This correction term is projected onto the invariant frame
in such a way that the predicted state can be corrected
component by component, i.e. along each of the n vectors
in the standard basis of Rn formed by the invariant vector
field Bpx̂k`1|kq “ tωipx̂k`1|kquiPrr 1 ;n ss (see [18] for more
details). This is the most natural approach to adapting the
UKF algorithm in order to construct an invariant estimator
such that:

1) the correction terms are computed by a UKF-type
scheme adapted to the invariant setting of the estimation
problem which samples the state space using a classical
unscented transform technique, like conventional sigma-
points Kalman filtering;

2) the correction terms also preserve the specific symme-
tries of the system, since they are are constructed from
an invariant innovation term and gain terms that are
functions of the fundamental invariants and the invariant
output error.

Algorithm 1. (Invariant Unscented Kalman filter):

In terms of the Unscented Transform UT(¨) the invariant
unscented Kalman filter prediction and update steps can be
written by using Lemma 1. and Lemma 2. as follows :

‚ Prediction: Compute the predicted state mean x̂k`1|k and
the predicted covariance Px

k`1|k as

rx̂k`1|k, P̃x
k`1|ks “ UTpf, x̂k|k,Px

k|k,ηp¨qq
Px
k`1|k “ P̃x

k`1|k `Wk
(9)

‚ Update: Compute the predicted mean ŷk`1|k and co-
variance of the measurement Py

k`1|k , and the cross-
corvariance of the state and measurement Pxy

k`1|k :

rŷk`1|k, P̃
y
k`1|ks “ UTph, x̂k`1|k,Px

k`1|k,Ep¨qq
Py
k`1|k “ P̃y

k`1|k `Vk

Pxy
k`1|k 9 `

ηpX k`1|k, x̂k`1|kq, ¨ ¨ ¨
Epŷk`1|k,g, ŷ

piq
k`1|kq

˘

(10)
An estimation x̂k`1|k`1 of xk`1 is then computed by the
Kalman filtering equations :

x̂k`1|k`1 “ x̂k`1|k `Kk`1 . . .
ˆ Epŷk`1|k, x̂k`1|k,yk`1, ωpx̂k`1|kqq

Px
k`1|k`1 “ Px

k`1|k ´Kk`1 ¨Py
k`1|k ¨KT

k`1,
(11)

where Kk`1 “ Pxy
k`1|k ¨ Py´1

k`1|k and yk`1 is the raw
measurements.

The nonlinear correction Epŷk`1|k, x̂k`1|k,yk`1, ωpx̂k`1|kqq
is weighted by the gain Kk`1 in such a way as to min-
imize the covariance of the invariant state estimation error
ηpX k`1|k, x̂k`1|kq.

The IUKF Matlab code will be available on the person-
nal website of authors for the final manuscript (see http:
//recherche.enac.fr/„jean-philippe.condomines/wp/).
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III. PROBLEM SETTING

A. Considered Discret-Time model

We consider an Attitude and Heading Reference Systems
(AHRS) in discrete-time [2] with step dt, characterized by
its quaternion qk with the quaternion product ˚. Eq (1) now
becomes :

qk`1 “ qk ` 0.5.qk ˚ pωmk
´ ωbkq.dt`wqk

˚ qk
ωbk`1

“ ωbk ` qk
´1 ˚ dt.wwk

˚ qk
ask`1

“ ask ` dt.wak

bsk`1
“ bsk ` dt.wbk

ˆ
yAk

yBk

˙
“

ˆ
ask .q

´1
k ˚A ˚ qk ` vAk

bsk .q
´1
k ˚B ˚ qk ` vBk

˙
,

(12)
Where wqk

,wwk
,wak ,wbk (resp. vAk

,vBk
) refer to the

process (resp. measurement) Gaussian white noise covariance
matrices. The AHRS is endowed with 3 triaxial sensors: 3
magnetometers measuring Earth’s magnetic field, which is
known constant and expressed in the body-fixed frame s.t.
vector yBk`1

“ q´1
k`1 ˚B ˚qk`1 (where B “ pBx By BzqT )

can be considered as an output of the observation equations;
3 gyroscopes produce the measurements associated with the
instantaneous angular velocities gathered in ωmk

P R3; and
3 accelerometers provide the measured output signals corre-
sponding to the acceleration. Constant A “ p0 0 gqT refers
to the local Earth’s gravity vector. Moreover, we add constant
bias vector ωbk on the angular velocities vector measurement
ωmk

and constant scaling factor, denoted by ask and bsk ,
which adjust and correct the predicted outputs yAk and yBk.

B. Comments on modeling imperfections of inertial sensors

Taking into account the maximum number of sensors’
imperfections (such as low frequency disturbances) within
the estimation process requires the introduction of several
additive state variables. A 1st-order observability analysis
(see [40] for more calculation details) shows that up to
6 additional unknown constants can be estimated without
introducing inobservability. Thus, the choice of considering
an additive constant bias vector ωb on the angular rates vector
measurement ωm has been made. Then, only 2 (of possible 3)
additional parameters have been introduced. Doing so allows
to rely not too much on the possibly perturbated magnetic field
within the estimation process of yA. These 2 additive variables
correspond to positive constant scaling factors, denoted by as
and bs, which adjust and correct the predicted outputs yA and
yB respectively. All these sensor imperfections are modeled
as pseudo-Gaussian random walks which can be physically
interpreted as slowly varying parameters. Note that the noise
wwk

is defined as a Langevin noise i.e, this noise is said
isotropic and enter into the system in an invariant way (see
Definition 1 in [33] for more details).

C. Invariance properties of the considered model

By taking advantage of the Galilean invariance properties
of the problem, the model equations can be expressed equiv-
alently in both aircraft coordinates and ground coordinates.

Given Eq 12 and the Lie group G “ H1 ˆ R5 (where H1

is the Lie algebra of quaternions of norm one) acting on the
entire state space, the dynamics of the system is indeed G-
equivariant. we have that:

Lemma 3. Let G a Lie-group, @g0 “ pqT0 ωT0 a0 b0qT P G,
the following output transformation proves that system mod-
eling is G-equivariant [8] : ρg0

pyk`1q “ ppa0.q´1
0 ˚ yAk`1

˚
q0qT pb0.q´1

0 ˚ yBk`1
˚ q0qT qT .

Moreover, the invariant state estimation error vector
ηpxk`1, x̂k`1|kq, which is a transposition of the linear error
to the multiplicative group may be defined by the following
expression:

Lemma 4. Consider p2n ` 1q sigma points X , s.t. X p0q
k|k “

x̂k|k “ pq̂Tk|k ω̂Tbk|k âsk|k b̂sk|kq. An invariant state estimation

error ηpX piq
k`1|k, x̂k`1|kq “ X piq

k`1|k
´1 ¨ x̂k`1|k{i P rr 0 ; 2n ss

can be expressed by [8]

ηpX piq, x̂k`1|kq “

¨
˚̊
˝

q´1
X piq ˚ q̂k`1|k

qX piq ˚ pωb,X piq ´ ω̂b,k`1|kq ˚ q´1
X piq

âsk`1|k{as,X piq

b̂sk`1|k{bs,X piq

˛
‹‹‚.

(13)
Where X piq´1 “ pq´1

X piq qX piq ˚ ωb,X piq ˚
q´1
X piq pas,X piqq´1 pbs,X piqq´1qT .

The invariance properties of the IUKF applied on AHRS
are closely intertwined with the invariant state estimation error.
Along the line of the Theorem 2 presented in [33], we consider
the variable ηpX piq, x̂k`1|kq as Markov processes,and is inde-
pendent of the inputs ωmk.3 The most important consequence
of this property is that the invariant filter gain(s) calculation
can be addressed ad hoc by choosing gain value(s) which will
meet some predifined requirements in terms of : -convergence
(guarantee and domain); -decoupling purposed. The conver-
gence propertie of filters will be highlighted in Section V.

D. Toward an invariant unscented Kalman filter for AHRS

At this point, we should note that the algorithm presented
in Section II uses a multiple parametrization of the transfor-
mation group obtained by successively defining the inverse of
each sigma point as a parameter of the composite mapping
φg “ px´1

k`1, ρgq. This is ultimately equivalent to defining
a set of p2n ` 1q n-dimensional moving frames in the state
space, sending each sigma point to the identity element e
via the local mapping x´1

k`1. The algorithm proposed here is
generic in the sense that it does not assume any specific form
for the equations of the observation model nor the relations
which define the group transformation ρg. Nevertheless, it can
sometimes be useful to extend and specialize the computations
in each of the steps listed above in order to make them more
explicit for AHRS.
The problem is to find a parametrization group g, reducing the
computation cost of the IUKF algorithm from Eq.(12) and the

3When the consante biais vector ωbk is correctly estimated that is the case
in practice.
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invariant predicted output error of unscented transform (See
Lemma 2) such that : Epŷk`1|k,g, ŷ

piq
k`1|kq “ ρgpŷk`1|kq ´

ρgpŷpiqk`1|kq. We are now in a position to study the modification
of the considered parametrization in the invariant predicted
output error of the IUKF algorithm.

IV. A PARAMETRIC FORMULATION STUDY FOR ATTITUDE
ESTIMATION

This section contains the main theoretical result of this
article. This result, Theorem 2., consists of a formulation
avoiding to find 4n2`2n invariant state errors, when the state
dimension is n, between the sigma points. The main idea of the
paper is to consider either g0 “ X piq

k`1|k
´1

or g0 “ x̂´1
k`1|k.

We futher make the following assumption :

Assumption 1. Without loss of generality and emphasize the
role of the parametrization, we assume evolution and obser-
vation noises in Eq.(12) equal to zero (i.e., wk “ vk “ 0).

A. The considered parametrization

1) Sigma-point as parametrization (g0 “ X piq
k`1|k

´1
):

For AHRS, there is a straightforward way to express the
p2n ` 1q invariant output errors in terms of the constant
vector pAT BT qT , the transformation group ρg0 , and a set
of invariant state estimation errors satisfying the following
relation :

Theorem 1. Let pAT BT qT , two constant vectors. For any
sigma points X piq, @i P rr 0 ; 2n ss the predicted invariant
output error Epŷk`1|k,X piq, ŷpiqk`1|kq, denoted ÊX for con-
venience can be expressed such as

ÊX “
2nÿ

j “ 0
j ‰ i

W
pjq
pmq

„ˆ
A
B

˙
´ ρηpX piq,X pjqq

ˆ
A
B

˙
. (14)

Proof. See Appendix D-(A)

Eq.(14) shows that the invariant prediction output errors
can be written as a weighted sum of the (invariant) distances
between the constant vector pAT BT qT and its image under
the mapping ρg over the Lie group parametrized by the
elements ηpX piq,X pjqq, where i ranges over rr 0 ; 2n ss and
@j P rr 0 ; 2n ss. This expression requires us to compute the
values of the p2n ` 1q invariant error vectors between the
sigmas points ηpX piq,X pjqq. As a special case, whenever
i P rr 0 ; 2n ss, then ηpX piq,X piqq “ ~0.

The algorithm therefore requires to find p2n ` 1q ˆ
p2n` 1q ´ p2n ` 1q “ 4n2 ` 2n terms ηpX piq,X pjqq after
these trivial cases are eliminated. In the simple case of an
AHRS with n “ 9, the IUKF approach therefore requires to
compute 342 invariant error vectors between the sigma points
at each iteration (i.e, prediction and correction step). For the
AHRS, given a set of p2n`1q sigma points, we implicitly need
to compute a potentially large number of invariant estimation
errors between the sigma points in order to compute the
invariant output errors.

2) Predicted state as parametrization (g0 “ x̂´1
k`1|k) :

The parameter g0 of the group transformation ρg0can also be
chosen to be constant and equal to x̂k`1|k, without changing
the performance of the estimation algorithm (see section V).
In the case where g0 “ x̂k`1|k, invariant output predicted
errors can be expressed as following:

Theorem 2. Solution to problem : Let pAT BT qT , two con-
stant vectors. For any predicted state x̂k`1|k,@i P rr 0 ; 2n ss the
predicted invariant output error Epŷk`1|k, x̂k`1|k, ŷ

piq
k`1|kq,

denoted Êx̂ for convenience, can be expressed such as

Êx̂ “ ρηpX piq,x̂k`1|kq

ˆ
A
B

˙
´

2nÿ

j“0

W
pjq
pmqρηpX pjq,x̂k`1|kq

ˆ
A
B

˙

(15)
Proof. See Appendix D-(B)

The significance of this result is that each elementary
error term takes an invariant of the estimation problem as an
argument, namely the constant vector pAT BT qT , and that the
parametrization of the Lie group ranges over the index j of
the weighted sum, depending on the sigma point considered
in each elementary calculation. Unlike the earlier case, we
only need to know 2n “ 18 invariant state estimation errors
between the predicted state and each sigma point in order to
compute the invariant output errors.
B. Invariant unscented Kalman filter equations for AHRS

Algorithm 2. (Invariant Unscented Kalman filter for AHRS):

In terms of the unscented transform UT(¨) the invariant
unscented Kalman filter for AHRS prediction and update steps
can be written by using Lemma 4. and Theorem 2. as
follows :
‚ Prediction: Compute the predicted state mean x̂k`1|k and

the predicted covariance Px
k`1|k as

rx̂k`1|k, P̃x
k`1|ks “ UTpf, x̂k|k,Px

k|k,x
´1
k x̂k|kq

Px
k`1|k “ P̃x

k`1|k `Wk

(16)
‚ Update: Compute the predicted mean ŷk`1|k and co-

variance of the measurement Py
k`1|k , and the cross-

corvariance of the state and measurement Pxy
k`1|k :

rŷk`1|k, P̃
y
k`1|ks “ UTph, x̂k`1|k,Px

k`1|k, Êx̂q
Py
k`1|k “ P̃y

k`1|k `Vk

Pxy
k`1|k 9 `

x´1
k`1x̂k`1|k, Êx̂

˘

(17)
An estimation x̂k`1|k`1 of xk`1 is then computed by the
Kalman filtering equations using Eq.(15) :

x̂k`1|k`1“
2nÿ

j“0

W
pjq
pmq

„
X pjq
k`1|k . . .

`
nÿ

i“1

K
piq
k`1

ˆ
ρx̂´1

k`1|k
pyk`1q ´ ρηpx̂k`1|k,X pjqq

ˆ
A
B

˙̇

ωipx̂k`1|kq


(18)

Proof. See Appendix D-(C)
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At each time step, the estimated state is therefore computed in
the form of a correction of the prediction derived from the left
or right-invariant dynamics of the system (i.e., ωipx̂k`1|kq, see
[39] for more details) expressed as a weighted sum of invariant
innovation terms over the Lie group parametrized directly or
indirectly by x̂k`1|k. After combining all of these resuults,
Eq. (18) can be rewritten as follows in the special case of an
AHRS :

q̂k`1|k`1 “ q̂k`1|k `
4ÿ

i“1

K
piq
k`1 . . . (19)

ˆ
˜
â´1
s,k`1|kq̂k`1|k ˚

“
y1:3
k`1 ´ ŷ1:3

k`1|k
‰

b̂´1
s,k`1|kq̂k`1|k ˚

“
y4:6
k`1 ´ ŷ4:6

k`1|k
‰
¸

ω̂b,k`1|k`1 “ ω̂b,k`1|k ` q̂´1
k`1|k ˚

7ÿ

i“5

K
piq
k`1 . . . (20)

ˆ
˜
â´1
s,k`1|kq̂k`1|k ˚ . . .
b̂´1
s,k`1|kq̂k`1|k ˚ . . .

“
y1:3
k`1 ´ ŷ1:3

k`1|k
‰ ˚ q̂´1

k`1|k“
y1:3
k`1 ´ ŷ1:3

k`1|k
‰ ˚ q̂´1

k`1|k

¸
˚ q̂k`1|k

âs,k`1|k`1 “ âs,k`1|k `K
p8q
k`1 (21)

ˆ
˜

q̂k`1|k ˚ . . .
âs,k`1|k b̂´1

s,k`1|kq̂k`1|k ˚ . . .
“
y1:3
k`1 ´ ŷ1:3

k`1|k
‰ ˚ q̂´1

k`1|k“
y4:6
k`1 ´ ŷ4:6

k`1|k
‰ ˚ q̂´1

k`1|k

¸

b̂s,k`1|k`1 “ b̂s,k`1|k `K
p9q
k`1 (22)

ˆ
˜
b̂s,k`1|kâ´1

s,k`1|kq̂k`1|k ˚ . . .
q̂k`1|k ˚ . . .
“
y1:3
k`1 ´ ŷ1:3

k`1|k
‰ ˚ q̂´1

k`1|k“
y4:6
k`1 ´ ŷ4:6

k`1|k
‰ ˚ q̂´1

k`1|k

¸

Proof. See Appendix D-(D)

Figures 3 and Figures 4 in appendix A, illustrates the two
theorems for the AHRS, and compares them with the more
general approach presented in Section II-B, which can be
applied to any type of invariant model.

C. Features of the IUKFx for AHRS

1) Sound geometric stucture for the quaternion estimation
(Feature #1): by constuction Eq.(19) preserves the unit norm
of the estimated quaternion.

2) Symmetry-preserving structure (Feature #2): in the con-
text of attitude estimation for mini-UAV applications, we
can give physical interpretations of the invariance properties
of the kinematic relations. Each invariance correspond to
a symmetry of the dynamics of the motion of the aircraft
that is independent of the reference system (aircraft or earth
coordinates) in which it is expressed. Thus, the estimation
error does not depend on the trajectory of the system.

3) reducing computation cost expected (Feature #3): we
have already computed the set tηpX piq, x̂k`1|kq{i P rr 0 ; 2n ssu
during the prediction step to find the covariance matrix of
the invariant state estimation errors. This formulation therefore
avoids the need to find the 4n2 ` 2n invariant state errors
between the sigma points.

V. SIMULATION RESULTS

Fig. 2: Pictorial overview of SPQR concept.

The motivation for this simulation is led by the development
of Small Payload Quick-Return (SPQR) study intended to
routinely deliver small payloads from International Space Sta-
tion (ISS) on-demand 4. The SPQR concept, originating from
NASA Ames Research Center at Moffett Field, CA, relies
on a three-stage method of returning payloads, after being
stored until needed and then loaded while on-board the ISS
(cf. Figure 2): a) Deorbit, by means of a passive deployable
drag system; b) Atmospheric reentry, via the deployment of
a passively self-stabilizing reentry body; c) Terminal descent
of the temperature-controlled paylaod canister beneath an
autonomous guided parafoil. To mature this final phase of
the SPQR concept, an autonomous parafoil system which
satisfies the demands of landing precision requirements must
be developed by using a small AHRS payload. We illustrate
the behavior of the UKF and the IUKF dedicated to AHRS
with both parametrizations (IUKFx,IUKFX ) by simulations
and compare this one with experiment data. A set of results for
the AHRS estimation problem generated from simulated noisy
data are then presented to demonstrate the well-foundedness
of the IUKF algorithm using state as parametrization (IUKFx),
as well as its potential benefits in both theoretical and SPQR
contexts.
A. Simuation Setting

The reference input data used for our evaluation of an IUKF-
type approach were generated by dynamic model simulations
describing the free fall of a parafoil. These simulated data
provide a straightforward way to validate the methodological
principles presented in this article, configure the parameters of
each method, and establish conclusions regarding the analysis
on the computational complexity. We consider the data both
with and without added noise (Figure 4). The reference
simulation that we used to validate our algorithms had a
duration of slightly over 100 seconds. The simulated parachute
system exhibits relatively strong dynamics. The roll, heading,
and pitch angles vary by up to several dozen degrees. The

4https://www.nasa.gov/mission pages/station/research/experiments/2543.
html
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Fig. 3: 3D trajectory of the parafoil in terminal descent starting
from the position (0,0,0). The simulated parachute system
exhibits relatively strong dynamics. The linear acceleration 9V
is non-zero from (0,0,0) to (0,-200,-200).

UAV also experienced significant variations in the velocity,
partially invalidating one of the hypotheses of the model in
Eq.(12), namely the assumption that the linear acceleration
is negligible i.e, 9V “ 0 (Figure 3). It would therefore be
interesting to investigate the effects of the error introduced
into the estimation process by assuming that 9V “ 0. Analysis
of the simulated data shows that 9V was non-zero throughout
the period t P r5 ; 40s.
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(a) Independent white gaussian noises.
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(b) Typical attitude anlges (φ, θ, ψ) in the ideal noise-free case.

Fig. 4: We illustrate a typical realization of the gaussian white
noise processes with zero mean which perturbate the nonlinear
state estimation problem to solve. Then, attitudes angles are
plotted on the same subfigure. The roll, heading, and pitch
angles vary by up to several dozen degrees.

B. Noise-Free Simulations
1) Attitude estimation: To emphase the effect of the

parametrization (Feature #1) on algorithms performance, we
first assume that the sensors are perfect (see Assumption 1.),
i.e., without noise. Figure 5 shows the estimated attitude
errors computed by the UKF, IUKFX and IUKFx algorithms.
Each estimate is compared against the pseudo-measurements
reconstructed from the components of the reference quaternion
state vector. The estimated angles match the reference values
almost perfectly. The attitude of the parafoil is correctly
reconstruct with respect to all three axes. Note that the error

introduced into the initial state of the simulation was corrected
very rapidly, after only a few computation steps (characteristic
time ă 0.5 sec.). However, the estimation errors (with a log
scale along the vertical axis) show that the IUKF estimator
converges more closely and quickly to the true values of
the flight parameters. The IUKFx achieves smaller estimation
errors than the UKF and IUKFX . Additionally, the comparison
of these error plots suggests that the residuals of the state
estimate constructed by IUKFx appear to be more stable over
time; a slight albeit slow decrease of these residuals may be
observed in the results generated by the UKF algorithm due to
9V ‰ 0 throughout the period t P r5 ; 40s. The estimates of the

new IUKF parametrization therefore outperforms the standard
variant of the UKF algorithm.

2) Invariance properties: Although we have established
that IUKFx behaves well in terms of reconstructing the
state, we still need to verify that it has the same invariance
properties as the IEKF algorithm (Feature #2, see section
III-C for details). We therefore need to check the symmetry-
preserving framework and hence that the estimated quaternion
q̂ptq “ pq0ptq, q1ptq, q2ptq, q3ptqq are now independent of the
trajectory, despite the presence of non-linear dynamics. The
initial state x̂0 was varied through α P p3; 6; 12q for the
three algorithms, while keeping the norm of the initial state
estimation error constant at all times. This gives the following
quaternions: TRUE SYSTEM INITIAL STATE

q0 0.99 cospπ{αq
q1 0 sinpπ{αq{?3

q2 -0.0103 -sinpπ{αq{?3

q3 0 sinpπ{αq{?3

In these calculations, the initial state x̂0 was varied for both
algorithms UKF and IUKFx, while keeping the norm of the
initial state estimation error constant at all times. Figures 6
plot the norm of the estimation errors over time for each of
the states q, ωb, as, and bs. The results reveal the invariance
properties of the IUKFx algorithm; its behavior with regard
to estimation errors is globally the same regardless of the
estimate chosen for the initial condition, unlike the classical
UKF algorithm. On every trajectory generated by varying the
initial conditions, the dynamics of the convergence of the
IUKFx estimate to the true state were identical. We then
run 500 Monte-Carlo simulations for different initial state on
the pitch and roll in order to demonstrate the convergence
boundarie (i.e limit up to instability case) for both algorithms.
Figure 7 shows that the convergence boundarie of the IUKFx

is larger than the UKF which is extremely useful for SPQR
context. We illustrate in Figure 8 convergence results obtained
by applying each of two UKF algorithms to the AHRS
for the same initial condition. Considering all of the results
established above, it seems reasonable to conclude that the
invariant unscented Kalman filter IUKFx proposed in this
article is capable of accurately estimate the state, in a similar
spirit to the various other invariant filters that can already be
found in the literature. The relatively constant nature of the
invariant state error makes it an extremely valuable source of
information that could be exploited by various other problems
(robust controls, fault detection,...).
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(a) UKF : estimated errors of the attitude anlges (φ, θ, ψ).
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(b) IUKFX : estimated errors of the attitude anlges (φ, θ, ψ).

0 20 40 60 80 100
Time (s)

10-6

10-4

10-2

100

Er
ro

r (
de

g)

(c) IUKFx : estimated errors of the attitude anlges (φ, θ, ψ).

Fig. 5: Attitude estimation errors with wrong initial angles and
9V ‰ 0 throughout the period t P r5 ; 40s. The plots show that

the IUKFx estimator converge more closely and quikly to the
true values of the flight parameters.

C. Measurement Noise

We now study the impact of the measurement noise on the
algorithms performances. Here, a series of additive noise terms
were incorporated into the reference simulation as perturba-
tions of the measurements ωm, yAm, and yBm. The experi-
mental data are sampled with a frequency equal to 50Hz which
characterized the inertial measurement unit and the magne-
tometers. The measurements are corrupted by gaussian white
noises whose standard deviations are set to : σgyro “ 0.2 ˝{s,
σaccelero “ 0.2g and σmagneto “ 500nT. In order to validate
our filters, we have also introduced a biases vector on ωm
s.t. ωb “ r0.1 rad/s 0.05 rad/s 0.02 rad/ssT . The two positive
scalar factor values are set to as “ 1.2 and bs “ 0.9 re-
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(a) UKF : state estimation error px̂´ xq.
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(b) IUKFx : state estimation error ηpx̂,xq. The only difference
relative to (a) is the choice of initial conditions.

Fig. 6: Linear state estimation error computed by UKF, as well
as the invariant state estimation computed by IUKFx.
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Fig. 7: Convergence boundaries on Roll and Pitch for UKF
(black dashed dot line) and IUKFx (black line). The conver-
gence boundarie of the IUKFx is larger than the UKF.
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Fig. 8: Attitude estimation on roll angle with initial state
outside the UKF convergence boundarie. The IUKFx is stable,
the UKF is unstable.
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UKF 0.01575 0.01578
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(a) Monte-Carlo average of the Root Mean Square Error
on (φk)1ďkďN over the whole trajectory, as

a function of the noise measurement variance σ2.

spectively. Initially, we set for the filters with incorrect angles
φ̄ „ N

´
0, pπ{4q2

¯
, θ̄ „ N

´
0, pπ{4q2

¯
, ψ̄ „ N

´
0, pπ{2q2

¯
.

We then run 500 Monte-Carlo simulations for different levels
of measurement noise σ2

accelero “ r4.10´4, 3.10´2s and com-
pare the (average) Root Mean Square Errors w.r.t the reference
values over the whole trajectory. Figures 9 compare the results
produced by the IUKFx,IUKFX and UKF algorithms. For this
trajectory, we see that IUKFx is sightly better than IUKFX .
The UKF is sightly better than IUKF when noise is moderate.

D. Claimed reduction of computational burned of the IUKF

In case of a real time embedded application, another
interesting filter characteristic is the computational effort
(Feature #3q. In section IV, we claimed the reduction of the
computational complexity of the IUKF parametrize by the
state (xk). A computational analysis consist in computing the
average time calculation using 500 Monte-Carlo simulation
using an Intel Core I7 2.Ghz. We thus see in Figure 10 that
the computation time of the IUKF is higher („19.5%) than
UKF algorithm due to additional operation on invariant state
error (See section I-D). But results clearly reveal that the
IUKF parametrized by the state (xk) is more computation time
efficient („7%) on Update step and („13%) on Output errors
(See Algorithm 2) than IUKF parametrized by sigma-point.

10-5 10-4 10-3 10-2 10-1
0

0.05

0.1

0.15
IUKFx
IUKF
UKF

(b) Monte-Carlo average of the Root Mean Square Error
on (θk)1ďkďN over the whole trajectory, as

a function of the noise measurement variance σ2.
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(c) Monte-Carlo average of the Root Mean Square Error
on (ψk)1ďkďN over the whole trajectory, as

a function of the noise measurement variance σ2.

Fig. 9: Noisy case - comparison of the average Root Mean
Square Error of IUKFx,IUKFX and UKF. The IUKFx is
sightly better than IUKFX algorithm but the UKF is sightly
better than IUKF when noise is moderate.
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Fig. 10: Comparison of the Computation effort for UKF,
IUKFX and IUKFx. The IUKFx is more computation time
efficient („7%) on Update step and („13%) on Output errors

VI. CONCLUSION AND DISCUSSION

We presented in this article a new formulation of invariant
unscented Kalman filtering for attitude estimation. These latter,
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named IUKFx, combines both invariant observers and the non-
linear unscented Kalman filtering theories while reducing the
computational cost of the standard IUKF. Its methodological
foundation, which forms the main contribution of this article,
consists in adapting the computational steps of the IUKF
technique to the attitude estimation problem by i) investigate
the IUKF detailed nonlinear equation, ii) define an invariant
state estimation error to update through time all covariance
matices and iii) study transformation group parametrization
on output errors.

In comparison with the state-of-the-art, our proposed IUKFx

nonlinear state estimation algorithm presents one main advan-
tage when considering computational aspects, avoiding to find
4n2 ` 2n invariant state errors in the predicted step of the
IUKF algorithm. The simulation results presented in Section V
have demonstrated that this specific formulation can reduce the
computation complexity without compromising the stability
and precision of the filter. At this stage some interesting (but
still preliminary) conclusions on the proposed formulation for
AHRS are :
‚ As discussed in Section II, using an invariant state

errors, covariances are left unchanged by dynamical sys-
tems’symmetries. This confers to gains some properties
of invariance which leads, by transitivity, to design an
IUKF symmetry-preserving state observer in the same
way that [33]. Stability of estimated standard deviation
from these covariances, which characterize estimated
state trajectory uncertainties, could facilitate new control
strategies design with less conservatism;

‚ A large convergence boundarie must be highlighted since
this proof of stability could be useful for the SPQR
context, in particular during the step of Atmospheric
reentry where angles of the parafoil could vary by up
to hundred degrees;

‚ The proposed formulation is very simple to implement
and induces a very limited computational burden com-
pared to the standard IUKF.

Finally, we have shown an equivalent capability of our pro-
posed IUKFx formulation in comparison with a standard IUKF
method for invariant nonlinear state estimation. Future work
will include performance test on embedded micro-controllers
for drone navigation and SLAM.
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APPENDIX A
ILLUSTRATIONS

x̃

X p1q

X p2q

X p3q

X p4q
ηpX p1q, x̃q

ηpX p2q, x̃q ηpX p3q, x̃q

ηpX p4q, x̃q

ỹ

ỹp1q

ỹp2q

ỹp3q

ỹp4q

EXp1q pỹ, ỹp1qq

EXp2q pỹ, ỹp2qq

EXp3q pỹ, ỹp3qq

EXp4q pỹ, ỹp4qq

hp¨q
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X p1q

X p2q

X p3q

X p4q

ηpX p1q,X p2qq
ηpX p2q,X p1qq

ηpX p1q,X p4qq
ηpX p4q,X p1qq

ηpX p1q,X p3qq
ηpX p3q,X p1qq

repeat this operation @X piq . . .

find the 4n2 ` 2n

parameters ηpX piq,X pjqq

is replaced by:
ˆ
A
B

˙
ρηpX piq,X pjqq

ˆ
A
B

˙

-

2nÿ

j “ 0
j ‰ i

W
pjq
pmq

“ ¨ ‰

Fig. 11: Comparison of standard IUKF and an applied version of IUKF specifically adapted to the AHRS, parametrized by
the sigma points tηpx̂k`1|k,X piqq{i P rr 0 ; 2n ssu
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find the 2n

parameters ηpx̃,X pjqq
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-
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Fig. 12: Comparison of standard IUKF and an applied variant of IUKF specifically adapted to the AHRS, parametrized by
the predicted state x̂k`1|k “

ÿ

jPrr 0 ; 2n ss
W
pjq
pmqX

pjq
k`1|k
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APPENDIX B
UNSCENTED TRANSFROM

The unscented transform [41] can be used for forming a
Gaussian approximation to the joint distribution of random
variable xk|k and yk|k, when the random variable yk|k is ob-
tained by a non-linear transformation of the Gaussian random
variable xk|k as follow :

#
xk|k „ Npx̂k|k,Pk|kq
yk|k “ γpxk|k, kq

(23)

The aims of the basic UT is to form a fixed number of
deterministically chosen sigma-points X k|k, which capture the
“true” mean x̂k|k and covariance Pk|k of the original distri-
bution xk|k. This set of points must represent accurately the
first and second order moments. These sigma-points are then
propagated through the nonlinear functions Eq.(23) providing
a cloud of evolving points. The mean x̂k|k`1 and estimated
covariance matrix Pk|k`1 of the transformed points are then
computed based on their statistics. The unscented transform
can be used for forming

ˆ
xk|k
yk|k

˙
„ N

˜ˆ
x̂k|k

ŷk`1|k

˙
,

˜
Px
k|k Pxy

k|k
Pyx
k|k Py

k|k

¸¸
(24)

to the joint probability density of xk|k P Rn and yk|k P Rm.
The unscented transform is the following :

1) Form the set of 2n`1 sigma points from the coloms of
the nˆ n matrix p?n` λqPk|k as follows:

$
’’&
’’%

X p0q
k|k “ xk|k

X piq
k|k “ xk|k `

”b
pn` λqPx

k|k
ı
, i “ 1, ¨ ¨ ¨ , n

X piq
k|k “ xk|k ´

”b
pn` λqPx

k|k
ı
, i “ n` 1, ¨ ¨ ¨ , 2n

(25)
and compute the associated weights
W
p0q
m ,W pOq

c ,W piq
m ,W piq

c .5

2) Transform each of sigma as

y
piq
k`1|k “ γpX piq

k|kq, i “ 0, ¨ ¨ ¨ , 2n. (26)

3) Mean and covariance estimates for yk`1|k can be com-
puted as

ŷk`1|k «
2nÿ

i“0

W piq
m ŷ

piq
k`1|k (27)

Py
k`1|k «

2nÿ

i“0

W piq
c pŷpiqk`1|k ´ ŷk`1|kqpŷpiqk`1|k ´ ŷk`1|kqT

(28)

5W
p0q
m “ λ{pn ` λq,W

pOq
c “ λ{pn ` λq ` p1 ´ α2 ` βq,W

piq
m “

1{t2pn ` λqu, i “ 1, ¨ ¨ ¨ , 2n,W
piq
c “ 1{t2pn ` λqu, i “ 1, ¨ ¨ ¨ , 2n. The

parameter λ is a scaling parameter defined as λ “ α2pn`κq´n. The positive
constants α, β and κ are used as parameters of the method. We set uncented
transform parameters to κ “ 0 and β “ 2. α keeps a free-parameter chosen
by the practitioner, which must be small (α “ 10´3 in our applications).

APPENDIX C
DERIVATIONS

A. Derivation of the invariant state error form of UT

Let’s consider a group action, full-rank and transitive (i.e.
dimpGq “ dimpX q “ n). G can be identified with the state
space X “ Rn in such a way that the local transformation
on the state ϕg is viewed as the left or right-multiplication
mapping ϕgpxq “ g ¨ x. Solving the normalization equations
to obtain ϕgpxq “ g ¨ x “ e from Cartan moving frame
method, where e is the identity element of the group G, gives
us the moving frame γpxq “ x´1 as a solution [42]. If we
define the invariant state error on Lie group G such as

ηpxk`1, x̂k`1|kq “ x´1
k`1.x̂k`1|k (29)

then the unscented transform in Eq.(3) can be written in form
of the last equation in Eq.(7).

X k`1|k “ rX p0q
k`1|k X p1q

k`1|k . . . X p2nq
k`1|ks “ fpX k|k,ukq

x̂k`1|k «
2nÿ

i“0

W
piq
pmqX

piq
k`1|k

Px
k`1|k «

2nÿ

i“0

W
piq
pcqpϕX piq´1

k`1|k
pX piq

k`1|kq ´ ϕX piq´1

k`1|k
px̂k`1|kqq

ˆ pϕX piq´1

k`1|k
pX piq

k`1|kq ´ ϕX piq´1

k`1|k
px̂k`1|kqqT

«
2nÿ

i“0

W
piq
pcqηpX piq

k`1|k, x̂k`1|kqηT pX piq
k`1|k, x̂k`1|kq

«
2nÿ

i“0

W
piq
pcqpX piq´1

k`1|k ¨x̂k`1|kqpX piq´1

k`1|k ¨x̂k`1|kqT

which leads to last equation in Lemma 1.

B. Derivation of the invariant output error form of UT

If we define the invariant output error using the Lie group
@g P G such as

Epŷk`1,g, ŷ
piq
k`1|kq “ ρgpŷk`1q ´ ρgpŷpiqk`1|kq (30)

then the unscented transform in Eq.(4) can be written in form
of the last equation in Eq.(8).

Ŷk`1|k “ rŷp0qk`1|k ŷ
p1q
k`1|k . . . ŷ

p2nq
k`1|ks “ hpX k`1|k,ukq

ŷk`1|k «
2nÿ

i“0

W
piq
pmqŷ

piq
k`1|k

Py
k`1|k «

2nÿ

i“0

W
piq
pcqpρgpŷk`1|kq ´ ρgpŷpiqk`1|kqq

ˆ pρgpŷk`1|kq ´ ρgpŷpiqk`1|kqqT

«
2nÿ

i“0

W
piq
pcqEpŷk`1|k,g,y

piq
k`1|kq

ˆ ET pŷk`1|k,g,y
piq
k`1|kq

which leads to last equation in Lemma 2.
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APPENDIX D
PROOFS OF THE RESULTS OF SECTION V

A. Proof of Theorem 1

Let g0 “ X piq
k`1|k

´1
, we have :

ÊX “ ρX piq´1 pŷk`1|kq ´ ρX piq´1 pŷpiqk`1|kq

“
ˆ
A
B

˙
´
˜
a´1
s,X piqqX piq ˚ ŷAk`1|k ˚ q´1

X piq

b´1
s,X piqqX piq ˚ ŷBk`1|k ˚ q´1

X piq

¸

“
ˆ
A
B

˙
¨ ¨ ¨

´

¨
˚̊
˚̊
˝

a´1
s,X piqqX piq ˚

´ 2nÿ

j“0

W
pjq
pmqhApX pjqq

¯
˚ q´1

X piq

b´1
s,X piqqX piq ˚

´ 2nÿ

j“0

W
pjq
pmqhBpX pjqq

¯
˚ q´1

X piq

˛
‹‹‹‹‚

Where hAp¨q and hBp¨q denotes the restriction of the obser-
vation model to the outputs associated with the acceleration
and the magnetic field respectively.

ÊX “
ˆ
A
B

˙
´

2nÿ

j“0

W
pjq
pmq ¨ ¨ ¨

ˆ
˜
a´1
s,X piqqX piq ˚ `as,X pjqq´1

X pjq ˚A ˚ qX pjq
˘ ˚ q´1

X piq

b´1
s,X piqqX piq ˚ `bs,X pjqq´1

X pjq ˚B ˚ qX pjq
˘ ˚ q´1

X piq

¸

“
ˆ
A
B

˙
´

2nÿ

j“0

W
pjq
pmq ¨ ¨ ¨

(31)

ˆ
˜
a´1
s,X piqas,X pjq ¨ pqX pjq ˚ q´1

X piqq´1 ˚ . . .
b´1
s,X piqbs,X pjq ¨ pqX pjq ˚ q´1

X piqq´1 ˚ . . .
(32)

A ˚ pqX pjq ˚ q´1
X piqq

B ˚ pqX pjq ˚ q´1
X piqq

˙

(33)

“
ˆ
A
B

˙
´

2nÿ

j“0

W
pjq
pmqρηpX piq,X pjqq

ˆ
A
B

˙

We have
2nÿ

j“0

W
pjq
pmq “ 1.

Hence

ÊX “
2nÿ

j“0

W
pjq
pmq

„ˆ
A
B

˙
´ ρηpX piq,X pjqq

ˆ
A
B

˙
. (34)

Moreoverˆ
A
B

˙
´ ρηpX piq,X piqq

ˆ
A
B

˙
“

ˆ
A
B

˙
´ ρ~0

ˆ
A
B

˙
“ ~0

Equation (34) can be expressed in the case where j ‰ i,
which concludes the proof with @i P rr 0 ; 2n ss:

ÊX “
2nÿ

j “ 0
j ‰ i

W
pjq
pmq

„ˆ
A
B

˙
´ ρηpX piq,X pjqq

ˆ
A
B

˙
.

B. Proof of Theorem 2

Let g0 “ x̂´1
k`1|k. We have

Êx̂ “ ρx̂´1
k`1|k

pŷk`1|kq ´ ρx̂´1
k`1|k

pŷpiqk`1|kq
“ ρx̂´1

k`1|k
phA,BpX piqqq ´ ρx̂´1

k`1|k
pŷk`1|kq

“ ρx̂´1
k`1|k

phA,BpX piqqq ´ ¨ ¨ ¨ (35)

2nÿ

j“0

W
pjq
pmqρηpx̂k`1|k,X pjqq

ˆ
A
B

˙

“ h
A,B
pηpx̂k`1|k,X piqqq ´ ¨ ¨ ¨ (36)

2nÿ

j“0

W
pjq
pmqρηpx̂k`1|k,X pjqq

ˆ
A
B

˙

With h
A,B
pηpx̂k`1|k,X piqqq, we have :

˜
as,X piq ¨ â´1

s,k`1|kq̂k`1|k ˚ q´1
X piq ˚A ˚ qX piq ˚ q̂´1

k`1|k
bs,X piq b̂´1

s,k`1|k ¨ q̂k`1|k ˚ q´1
X piq ˚B ˚ qX piq ˚ q̂´1

k`1|k

¸
.

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

“ ρηpx̂k`1|k,X piqq

ˆ
A
B

˙

(37)
The claimed predicted invariant output error can be expressed
as a weighted sum of invariant output errors such as :

Êx̂ “ ρηpx̂k`1|k,X piqq

ˆ
A
B

˙
´

2nÿ

j“0

W
pjq
pmqρηpx̂k`1|k,X pjqq

ˆ
A
B

˙
.

C. Derivation of the IUKF for the AHRS

As shown in Section V, predicted state parametrization
Êx avoids the need to find 4n2 ` 2n invariant state errors.
The invariant unscented Kalman filter equations of the AHRS
problem can be derived as follows.

x̂k`1|k`1 “ x̂k`1|k `
nÿ

i“1

K
piq
k`1 . . .

ˆ Epyk`1, x̂k`1|k, ŷk`1|kq ¨ wipx̂k`1|kq

“ x̂k`1|k `
nÿ

i“1

K
piq
k`1

`
ρx̂´1

k`1|k
pyk`1q ¨ ¨ ¨

´ρx̂´1
k`1|k

pŷk`1|kq
˘ ¨ wipx̂k`1|kq

“ x̂k`1|k `
nÿ

i“1

K
piq
k`1

ˆ
ρx̂´1

k`1|k
pyk`1q ¨ ¨ ¨

´
2nÿ

j“0

W
pjq
pmqρηpx̂k`1|k,X pjqq

ˆ
A
B

˙˙
wipx̂k`1|kq

“ x̂k`1|k `
nÿ

i“1

K
piq
k`1

2nÿ

j“0

W
pjq
pmq

ˆ
ρx̂´1

k`1|k
pyk`1q

´ρηpx̂k`1|k,X pjqq

ˆ
A
B

˙˙
wipx̂k`1|kq

At each time step, the estimated state is therefore computed
in the form of a correction of the prediction derived from the
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left or right-invariant dynamics of the system expressed as a
weighted sum of invariant innovation terms over the Lie group
parametrized directly or indirectly by x̂k`1|k.

x̂k`1|k`1“ x̂k`1|k `
2nÿ

j“0

W
pjq
pmq

nÿ

i“1

K
piq
k`1

ˆ
ρx̂´1

k`1|k
pyk`1q ¨ ¨ ¨

´ρηpx̂k`1|k,X pjqq

ˆ
A
B

˙˙
¨ wipx̂k`1|kq

“
2nÿ

j“0

W
pjq
pmq

„
X pjq
k`1|k `

nÿ

i“1

K
piq
k`1

ˆ
ρx̂´1

k`1|k
pyk`1q

´ρηpx̂k`1|k,X pjqq

ˆ
A
B

˙˙
¨ wipx̂k`1|kq



D. Derivation of the detailed IUKF equation for the AHRS

The discrete-time invariant unscented Kalman filter equa-
tions can be derived for the special case of an AHRS.

q̂k`1|k`1 “ q̃ `
2nÿ

j“0

W
pjq
pmq

4ÿ

i“1

K
piq
k`1 ¨ ¨ ¨

ˆ
ˆ
ρx̂´1

k`1|k
pyk`1q ´ ρηpx̂k`1|k,X pjqq

ˆ
A
B

˙˙
˚ q̃

“ q̃ `
2nÿ

j“0

W
pjq
pmq

4ÿ

i“1

K
piq
k`1 ¨ ¨ ¨

ˆ
ˆ“
ã´1
s q̃ ˚ y1:3

k`1 ˚ q̃´1 ´ . . .“
b̃´1
s q̃ ˚ y4:6

k`1 ˚ q̃´1 ´ . . .
as,X pjq ã´1

s q̃ ˚ q´1
X pjq ˚A ˚ qX pjq ˚ q̃´1

‰ ˚ q̃
bs,X pjq b̃´1

s q̃ ˚ q´1
X pjq ˚B ˚ qX pjq ˚ q̃´1

‰ ˚ q̃
˙

“ q̃ `
2nÿ

j“0

W
pjq
pmq

4ÿ

i“1

K
piq
k`1 ¨ ¨ ¨

ˆ
ˆ
ã´1
s q̃ ˚ “y1:3

k`1 ´ as,X pjqq´1
X pjq ˚A ˚ qX pjq

‰

b̃´1
s q̃ ˚ “y4:6

k`1 ´ bs,X pjqq´1
X pjq ˚B ˚ qX pjq

‰
˙

“ q̃ `
2nÿ

j“0

W
pjq
pmq

4ÿ

i“1

K
piq
k`1 ¨ ¨ ¨

ˆ
ˆ
ã´1
s q̃ ˚ “y1:3

k`1 ´ h1:3pX pjq,ukq
‰

b̃´1
s q̃ ˚ “y4:6

k`1 ´ h4:6pX pjq,ukq
‰
˙

“ q̃ `
4ÿ

i“1

K
piq
k`1 ¨ ¨ ¨

ˆ

¨
˚̊
˚̊
˝

ã´1
s q̃ ˚

2nÿ

j“0

W
pjq
pmq

“
y1:3
k`1 ´ h1:3pX pjq,ukq

‰

b̃´1
s q̃ ˚

2nÿ

j“0

W
pjq
pmq

“
y4:6
k`1 ´ h4:6pX pjq,ukq

‰

˛
‹‹‹‹‚

q̂k`1|k`1 “ q̂k`1|k `
4ÿ

i“1

K
piq
k`1 ¨ ¨ ¨

ˆ
˜
â´1
s,k`1|kq̂k`1|k ˚

“
y1:3
k`1 ´ ŷ1:3

k`1|k
‰

b̂´1
s,k`1|kq̂k`1|k ˚

“
y4:6
k`1 ´ ŷ4:6

k`1|k
‰
¸

ω̂b,k`1|k`1 “ ω̂b,k`1|k ` q̂´1
k`1|k ˚

7ÿ

i“5

K
piq
k`1 . . .

ˆ
˜
â´1
s,k`1|kq̂k`1|k ˚ . . .
b̂´1
s,k`1|kq̂k`1|k ˚ . . .

“
y1:3
k`1 ´ ŷ1:3

k`1|k
‰ ˚ q̂´1

k`1|k“
y1:3
k`1 ´ ŷ1:3

k`1|k
‰ ˚ q̂´1

k`1|k

¸
˚ q̂k`1|k

âs,k`1|k`1 “ âs,k`1|k `K
p8q
k`1 ¨ ¨ ¨

ˆ
˜

q̂k`1|k ˚ . . .
âs,k`1|k b̂´1

s,k`1|kq̂k`1|k ˚ . . .
“
y1:3
k`1 ´ ŷ1:3

k`1|k
‰ ˚ q̂´1

k`1|k“
y4:6
k`1 ´ ŷ4:6

k`1|k
‰ ˚ q̂´1

k`1|k

¸

b̂s,k`1|k`1 “ b̂s,k`1|k `K
p9q
k`1 ¨ ¨ ¨

ˆ
˜
b̂s,k`1|kâ´1

s,k`1|kq̂k`1|k ˚ . . .
q̂k`1|k ˚ . . .
“
y1:3
k`1 ´ ŷ1:3

k`1|k
‰ ˚ q̂´1

k`1|k“
y4:6
k`1 ´ ŷ4:6

k`1|k
‰ ˚ q̂´1

k`1|k

¸
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