Multi-label Classification for the Generation of Sub-problems in Time-constrained Combinatorial Optimization - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année :

Multi-label Classification for the Generation of Sub-problems in Time-constrained Combinatorial Optimization

(1) , (2) , (3)
1
2
3

Résumé

This paper addresses the resolution of combinatorial optimization problems presenting some kind of recurrent structure, coupled with machine learning techniques. Stemming from the assumption that such recurrent problems are the realization of an unknown generative probabilistic model, data is collected from previous resolutions of such problems and used to train a supervised learning model for multi-label classification. This model is exploited to predict a subset of decision variables to be set heuristically to a certain reference value, thus becoming fixed parameters in the original problem. The remaining variables then form a smaller sub-problem whose solution, while not guaranteed to be optimal for the original problem, can be obtained faster, offering an advantageous tool for tackling time-sensitive tasks.
Fichier principal
Vignette du fichier
ICORES_2019_53.pdf (182.69 Ko) Télécharger le fichier
Origine : Publication financée par une institution
Loading...

Dates et versions

hal-02120128 , version 1 (05-05-2019)

Identifiants

Citer

Luca Mossina, Emmanuel Rachelson, Daniel Delahaye. Multi-label Classification for the Generation of Sub-problems in Time-constrained Combinatorial Optimization. ICORES 2019, 8th International Conference on Operations Research and Enterprise Systems, Feb 2019, Prague, Czech Republic. pp 133-141; ISBN: 978-989-758-352-0, ⟨10.5220/0007396601330141⟩. ⟨hal-02120128⟩
105 Consultations
163 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More