, 20 year passenger forecast, IATA, 2018.

J. K. Kuchar and L. C. Yang, A review of conflict detection and resolution modeling methods, IEEE Transactions on Intelligent Transportation Systems, vol.1, issue.4, pp.179-189, 2000.

Y. Yang, J. Zhang, K. Cai, and M. Prandini, Multi-aircraft conflict detection and resolution based on probabilistic reach sets, IEEE Transactions on Control Systems Technology, vol.25, issue.1, pp.309-316, 2017.

S. Hao, S. Cheng, and Y. Zhang, A multi-aircraft conflict detection and resolution method for 4-dimensional trajectory-based operation, Chinese Journal of Aeronautics, vol.31, issue.7, pp.1579-1593, 2018.

N. Yokoyama, Decentralized Conflict Detection and Resolution Using Intent-Based Probabilistic Trajectory Prediction, ser. AIAA SciTech Forum, 2018.

V. P. Jilkov, J. H. Ledet, and X. R. Li, Multiple model method for aircraft conflict detection and resolution in intent and weather uncertainty, IEEE Transactions on Aerospace and Electronic Systems, pp.1-1, 2018.

M. Radanovic, M. A. Piera-eroles, T. Koca, and J. J. Gonzalez, Surrounding traffic complexity analysis for efficient and stable conflict resolution, Transportation Research Part C: Emerging Technologies, vol.95, pp.105-124, 2018.

C. Allignol, N. Barnier, N. Durand, A. Gondran, and R. Wang, Large scale 3d en-route conflict resolution, Conference Proceedings
URL : https://hal.archives-ouvertes.fr/hal-01592235

Z. Liu, K. Cai, X. Zhu, and Y. Tang, Large scale aircraft conflict resolution based on location network, 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), Conference Proceedings, pp.1-8

S. Ravizza, J. Chen, J. A. Atkin, P. Stewart, and E. K. Burke, Aircraft taxi time prediction: comparisons and insights, Applied Soft Computing, vol.14, pp.397-406, 2014.

H. Lee, W. Malik, and Y. C. Jung, Taxi-out time prediction for departures at charlotte airport using machine learning techniques, 16th AIAA Aviation Technology, Integration, and Operations Conference, p.3910, 2016.

M. Ahmed, S. Alam, and M. Barlow, A cooperative co-evolutionary optimisation model for best-fit aircraft sequence and feasible runway configuration in a multi-runway airport, Aerospace, vol.5, issue.3, p.85, 2018.

S. Ayhan and H. Samet, Aircraft trajectory prediction made easy with predictive analytics, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.21-30, 2016.

R. Alligier, D. Gianazza, and N. Durand, Machine learning and mass estimation methods for ground-based aircraft climb prediction, IEEE Transactions on Intelligent Transportation Systems, vol.16, issue.6, pp.3138-3149, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01181173

M. Conde-rocha-murca, R. Delaura, R. J. Hansman, R. Jordan, T. Reynolds et al., Trajectory clustering and classification for characterization of air traffic flows, 16th AIAA Aviation Technology, Integration, and Operations Conference, p.3760, 2016.

N. Takeichi, R. Kaida, A. Shimomura, and T. Yamauchi, Prediction of delay due to air traffic control by machine learning, AIAA Modeling and Simulation Technologies Conference, p.1323, 2017.

S. Choi, Y. J. Kim, S. Briceno, and D. Mavris, Prediction of weatherinduced airline delays based on machine learning algorithms, Digital Avionics Systems Conference (DASC), pp.1-6, 2016.

Y. J. Kim, S. Choi, S. Briceno, and D. Mavris, A deep learning approach to flight delay prediction, Digital Avionics Systems Conference (DASC), 2016 IEEE/AIAA 35th, pp.1-6, 2016.

J. Schaeffer, A gamut of games, AI Magazine, vol.22, issue.3, p.29, 2001.

M. Campbell, A. J. Hoane, and F. Hsu, Deep blue, Artificial intelligence, vol.134, issue.1-2, pp.57-83, 2002.

N. Yakovenko, L. Cao, C. Raffel, and J. Fan, Poker-cnn: A pattern learning strategy for making draws and bets in poker games using convolutional networks, AAAI, pp.360-368, 2016.

M. Morav?ík, M. Schmid, N. Burch, V. Lis?, D. Morrill et al., Deepstack: Expertlevel artificial intelligence in heads-up no-limit poker, Science, vol.356, issue.6337, pp.508-513, 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness et al., Human-level control through deep reinforcement learning, Nature, vol.518, issue.7540, p.529, 2015.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre et al., Mastering the game of go with deep neural networks and tree search, nature, vol.529, issue.7587, pp.484-489, 2016.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra et al., Deterministic policy gradient algorithms, ICML, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00938992

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez et al., Continuous control with deep reinforcement learning, 2015.