E. W. Stacy, A Generalization of the Gamma Distribution, The Annals of Mathematical Statistics, vol.33, pp.1187-1192, 1962.

L. Amoroso, Ricerche intorno alla curva dei redditi, vol.194, pp.123-159, 1925.
DOI : 10.1007/bf02409935

G. E. Crooks, The Amoroso Distribution, 2010.

H. Shima, F. Nielsen, and F. Barbaresco, Geometry of Hessian Structures. Geometric Science of Information

, Eds, pp.37-55, 2013.

J. Duistermaat, On Hessian Riemannian structures, Asian journal of mathematics, vol.5, pp.79-91, 2001.
DOI : 10.4310/ajm.2001.v5.n1.a6

URL : http://www.intlpress.com/site/pub/files/_fulltext/journals/ajm/2001/0005/0001/AJM-2001-0005-0001-a006.pdf

K. Arwini, C. Dodson, A. Doig, W. Sampson, J. Scharcanski et al.,

N. Randomness and . Independence, , p.201

. Springer, , 2008.

I. Chavel, Riemannian Geometry: A Modern Introduction, Cambridge Studies in Advanced Mathematics, p.203

B. ;. Guo, Z. Q.;-j.l, Q. M. Luo, and C. Journal=mathematica, Sharp Inequalities for Polygamma
DOI : 10.1515/ms-2015-0010

URL : http://arxiv.org/pdf/0903.1984

P. Vemuri and C. R. Jack, Role of structural MRI in Alzheimer's disease, vol.2, p.10, 2010.

R. Cuingnet, E. Gerardin, J. Tessieras, G. Auzias, S. Lehéricy et al., , p.209

H. Colliot and O. , Automatic classification of patients 210 with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database, vol.56, p.11, 2011.

R. K. Lama, J. Gwak, J. S. Park, and S. W. Lee, Diagnosis of Alzheimer's Disease Based on Structural MRI Images 213

, Using a Regularized Extreme Learning Machine and PCA Features, Journal of Healthcare Engineering, vol.214, p.12, 2017.

L. Pini, M. Pievani, M. Bocchetta, D. Altomare, P. Bosco et al., , vol.216

G. B. Frisoni, Brain atrophy in Alzheimer's Disease and aging, Ageing Research Reviews, vol.30, pp.25-48, 2016.

E. Busovaca, M. E. Zimmerman, I. B. Meier, E. Y. Griffith, S. M. Grieve et al., , vol.219

A. M. Brickman, Is the Alzheimer's disease cortical thickness signature a biological marker for memory? 220 Brain imaging and behavior, vol.10, p.14, 2016.

E. Ruiz, J. Ramírez, J. M. Górriz, and J. Casillas, Alzheimer's Disease Neuroimaging Initiative

, Alzheimer's Disease Computer-Aided Diagnosis: Histogram-Based Analysis of Regional MRI Volumes 223 for Feature Selection and Classification, Journal of Alzheimer's disease: JAD, vol.65, pp.819-842, 2018.

G. Giulietti, M. Torso, L. Serra, B. Spanò, C. Marra et al., , vol.226

, Whole brain white matter histogram analysis 227 of diffusion tensor imaging data detects microstructural damage in mild cognitive impairment and 228 alzheimer's disease patients, Journal of magnetic resonance imaging: JMRI, vol.229, p.16, 2018.

O. Querbes, F. Aubry, J. Pariente, J. A. Lotterie, J. F. Démonet et al., , p.230

P. Celsis, Alzheimer's Disease Neuroimaging Initiative. Early diagnosis of Alzheimer's disease using 231 cortical thickness: impact of cognitive reserve, Brain: A Journal of Neurology, vol.132, pp.2036-2047, 2009.

S. E. Jones, B. R. Buchbinder, and I. Aharon, Three-dimensional mapping of cortical thickness using Laplace's 234 equation, Human Brain Mapping, vol.11, pp.12-32, 2000.

L. Kaufman and P. Rousseeuw, Clustering by means of Medoids. Statistical Data Analysis Based on the