, Global air traffic management operational concept, 2005.

H. Swenson, R. Barhydt, and M. Landis, Next Generation Air Transportation System (NGATS) Air Traffic Management (ATM)-Airspace Project, 2006.

. Sesar-consortium, Milestone Deliverable D3: The ATM Target Concept, 2007.

A. Klein, P. Kopardekar, M. D. Rodgers, and H. Kaing, Airspace playbook: Dynamic airspace reallocation coordinated with the national severe weather playbook, Proceedings of the 7th AIAA Aviation Technology, Integration and Operations Conference, 2007.

I. Gerdes, A. Temme, and M. Schultz, Dynamic airspace sectorisation for flight-centric operations, Transportation Research Part C: Emerging Technologies, vol.95, pp.460-480, 2018.

P. Kopardekar and S. Magyarits, Measurement and prediction of dynamic density, Proceedings of the 5th USA/Europe Air Traffic Management R & D Seminar, 2003.

B. Gano, B. Chatterji, and . Sridhar, Neural network based air traffic controller workload prediction, American Control Conference, vol.4, pp.2620-2624, 1999.

D. Gianazza and K. Guittet, Evaluation of air traffic complexity metrics using neural networks and sector status, Proceedings of the 2nd International Conference on Research in Air Transportation. ICRAT, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00938105

D. Gianazza, Learning air traffic controller workload from past sector operations, Proceedings of the 12th USA/Europe Air Traffic Management R & D Seminar, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01592233

P. Flener and J. Pearson, Automatic airspace sectorisation: A survey, 2013.

S. Zelinski and C. Lai, Comparing methods for dynamic airspace configuration, Digital Avionics Systems Conference (DASC), 2011 IEEE/AIAA 30th, pp.3-4, 2011.

M. Bloem and P. Gupta, Configuring airspace sectors with approximate dynamic programming, International Congress of the Aeronautical Sciences 2010, number ARC-E-DAA-TN1935, 2010.

J. Bedouet, T. Dubot, and L. Basora, Towards an operational sectorisation based on deterministic and stochastic partitioning algorithms, The Sixth SESAR Innovation Days, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01411350

J. Bedouet and T. Dubot, Tactical prediction of the number of control positions with softmax regression and tree search, The Eighth SESAR Innovation Days, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01994799

D. Gianazza and J. M. Alliot, Optimization of air traffic control sector configurations using tree search methods and genetic algorithms, Proceedings of the 21st Digital Avionics Systems Conference, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00990194

D. Gianazza, Airspace configuration using air traffic complexity metrics, Proceedings of the 7 th USA/Europe Seminar on Air Traffic Management Research and Development, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00938172

D. Gianazza, C. Allignol, and N. Saporito, An efficient airspace configuration forecast, Proceedings of the 8th USA/Europe Air Traffic Management R & D Seminar, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01020720

D. Gianazza, Forecasting workload and airspace configuration with neural networks and tree search methods, Artificial Intelligence Journal, vol.174, issue.7-8, pp.530-549, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01020725

, ACT-540 NAS Advanced Concepts Branch. An evaluation of dynamic density metrics using RAMS. Technical report (draft) DOT/FAA/CT-TN, Federal Aviation Administration, 2001.

A. Yousefi, G. L. Donohue, and K. M. Qureshi, Investigation of en route metrics for model validation and airspace design using the total airport and airspace modeler (TAAM), Proceedings of the fifth USA/Europe Air Traffic Management R&D Seminar, 2003.

A. J. Masalonis, M. B. Callaham, and C. R. Wanke, Dynamic density and complexity metrics for realtime traffic flow management, Proceedings of the 5th USA/Europe Air Traffic Management R & D Seminar, 2003.

A. Majumdar, W. Y. Ochieng, G. Mcauley, J. M. Lenzi, and C. Lepadetu, The factors affecting airspace capacity in europe: A framework methodology based on cross sectional time-series analysis using simulated controller workload data, Proceedings of the 6th USA/Europe Air Traffic Management R & D Seminar, 2005.

G. B. Chatterji and B. Sridhar, Measures for air traffic controller workload prediction, Proceedings of the First AIAA Aircraft Technology, Integration, and Operations Forum, 2001.

D. Gianazza and K. Guittet, Selection and evaluation of air traffic complexity metrics, Proceedings of the 25th Digital Avionics Systems Conference. DASC, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00938180

D. Gianazza, Smoothed traffic complexity metrics for airspace configuration schedules, Proceedings of the 3nd International Conference on Research in Air Transportation. ICRAT, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01020711

D. Gianazza, Analysis of a workload model learned from past sector operations, SID 2017, 7th SESAR Innovation Days, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01652046

D. Gianazza, J. M. Alliot, and G. Granger, Optimal combinations of air traffic control sectors using classical and stochastic methods, Proceedings of the 2002 International Conference on Artificial Intelligence, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00990320