S. Das, B. L. Matthews, A. N. Srivastava, and N. C. Oza, Multiple kernel learning for heterogeneous anomaly detection: algorithm and aviation safety case study, Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.47-56, 2010.

N. Chrysanthos, Kernel methods for flight data monitoring, 2014.

M. Sakurada and T. Yairi, Anomaly detection using autoencoders with nonlinear dimensionality reduction, Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, p.4, 2014.

C. Zhou and R. C. Paffenroth, Anomaly detection with robust deep autoencoders, Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.665-674, 2017.

C. Barreyre, Statistiques en grande dimension pour la détection d'anomalies dans les données fonctionnelles issues des satellites, 2018.

C. Vondrick, H. Pirsiavash, and A. Torralba, Generating videos with scene dynamics, Advances in Neural Information Processing Systems, vol.29, pp.613-621, 2016.

G. Jarry, D. Delahaye, F. Nicol, and E. Féron, Aircraft atypical approach detection using functional principal component analysis, SESAR Innovations Days, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01944595

I. J. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Wardefarley et al., Generative adversarial nets, Proceedings of the 27th International Conference on Neural Information Processing Systems, vol.2

M. A. Cambridge and . Usa, , pp.2672-2680, 2014.

A. Brock, J. Donahue, and K. Simonyan, Large scale GAN training for high fidelity natural image synthesis, International Conference on Learning Representations, 2019.

E. Putin, A. Asadulaev, Q. Vanhaelen, Y. Ivanenkov, A. V. Aladinskaya et al., Adversarial threshold neural computer for molecular de novo design, Molecular Pharmaceutics, vol.15, issue.10, p.29569445, 2018.

S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele et al., Generative adversarial text to image synthesis, Proceedings of The 33rd International Conference on Machine Learning, ser. Proceedings of Machine Learning, vol.48, pp.1060-1069, 2016.

T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidterfurth, and G. Langs, Unsupervised anomaly detection with generative adversarial networks to guide marker discovery, CoRR, 2017.

A. Gupta, J. Johnson, L. Fei-fei, S. Savarese, and A. Alahi, Social gan: Socially acceptable trajectories with generative adversarial networks, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

N. Hirose, A. Sadeghian, P. Goebel, and S. Savarese, To go or not to go? a near unsupervised learning approach for robot navigation, CoRR, 2017.

W. Ding, W. Wang, and D. Zhao, Multi-Vehicle Trajectories Generation for Vehicle-to-Vehicle Encounters, 2019 IEEE International Conference on Robotics and Automation (ICRA), 2019.

I. J. Goodfellow, NIPS 2016 tutorial: Generative adversarial networks, CoRR, 2017.

D. Poles, A. Nuic, and V. Mouillet, Advanced aircraft performance modeling for atm: Analysis of bada model capabilities, 29th Digital Avionics Systems Conference, p.1, 2010.

A. Nuic, D. Poles, and V. Mouillet, Bada: An advanced aircraft performance model for present and future atm systems, International journal of adaptive control and signal processing, vol.24, issue.10, pp.850-866, 2010.

D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, 2014.

H. Stark and J. Woods, Probability, random processes, and estimation theory for engineers, 1986.

C. Hurter, S. Puechmorel, F. Nicol, and A. Telea, Functional decomposition for bundled simplification of trail sets, IEEE Transactions on Visualization and Computer Graphics, vol.24, issue.1, pp.500-510, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01587221

M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein gan, ArXiv, 2017.