M. D. Feit and J. A. Fleck, Light propagation in graded-index optical fibers, Applied Optics, vol.17, issue.24, pp.3990-3998, 1978.

D. F. St-mary, D. Lee, and G. Botseas, A modified wide angle parabolic wave equation, Journal of Computational Physics, vol.71, pp.304-315, 1987.

J. R. Kuttler and G. D. Dockery, Theoretical description of the parabolic approximation/Fourier split-step method of representing electromagnetic propagation in the troposphere, Radio Science, vol.26, pp.381-393, 1991.

D. Lee, A. D. Pierce, and E. Shang, Parabolic equation development in the twentieth century, Journal of Computational Acoustics, vol.8, pp.527-637, 2000.

T. R. Taha and M. I. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation, Journal of Computational Physics, vol.55, issue.84, pp.90003-90005, 1984.

G. M. Muslu and H. A. Erbay, Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation, Mathematics and Computers in Simulation, vol.67, pp.581-595, 2005.

M. Levy, Parabolic Equation Methods for Electromagnetic Wave Propagation, IET editions, 2000.

R. H. Hardin and F. D. Tappert, Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations, SIAM Review, vol.15, pp.423-429, 1973.

G. D. Dockery and J. R. Kuttler, An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation, IEEE Transactions on Antennas and Propagation, vol.44, pp.1592-1599, 1996.

A. E. Barrios, A terrain parabolic equation model for propagation in the troposphere, IEEE Transactions on Antennas and Propagation, vol.42, pp.90-98, 1994.

D. J. Donohue and J. R. Kuttler, Propagation modeling over terrain using the parabolic wave equation, IEEE Transactions on Antennas and Propagation, vol.48, pp.260-277, 2000.

R. Janaswamy, A curvilinear coordinate-based split-step parabolic equation method for propagation predictions over terrain, IEEE Transactions on Antennas and Propagation, vol.46, pp.1089-1097, 1998.

W. L. Siegmann, G. A. Kriegsmann, and D. Lee, A wide-angle three-dimensional parabolic wave equation, Journal of the Acoustical Society of America, vol.78, pp.659-664, 1985.

F. Sturm and J. A. Fawcett, On the use of higher-order azimuthal schemes in 3-D PE modeling, Journal of the Acoustical Society of America, vol.113, pp.3134-3145, 2003.

F. Sturm, Numerical study of broadband sound pulse propagation in three-dimensional oceanic waveguides, Journal of the Acoustical Society of America, vol.117, pp.1058-1079, 2005.

M. Belonosov, M. Dmitriev, V. Kostin, D. Neklyudov, and V. Tcheverda, An iterative solver for the 3D Helmholtz equation, Journal of Computational Physics, vol.345, pp.330-344, 2017.

A. A. Zaporozhets and M. F. Levy, Bistatic RCS calculations with the vector parabolic equation method, IEEE Transactions on Antennas and Propagation, vol.47, pp.1688-1696, 1999.

R. Janaswamy, Path loss predictions in the presence of buildings on flat terrain: A 3-D vector parabolic equation approach, IEEE Transactions on Antennas and Propagation, vol.51, pp.1716-1728, 2003.

A. Ginestet, Modélisation de la propagation d'une onde electromagnétique sur des scènes de grande taille par résolution de l'equation parabolique 3D vectorielle, 2007.

H. Zhou, A. Chabory, and R. Douvenot, Comparisons of discrete and continuous propagators for the modelling of low tropospheric propagation, 11th European Conference on Antennas and Propagation (EuCAP, pp.1236-1238, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01527004

H. Zhou, Modeling the atmospheric propagation of electromagnetic waves in 2D and 3D using Fourier and wavelet transforms, vol.3, 2018.
URL : https://hal.archives-ouvertes.fr/tel-01929593

H. Zhou, A. Chabory, and R. Douvenot, A 3-D split-step Fourier algorithm based on a discrete spectral representation of the propagation equation, IEEE Transactions on Antennas and Propagation, vol.65, issue.4, 1988.
URL : https://hal.archives-ouvertes.fr/hal-01471666

W. C. Chew, Electromagnetic theory on a lattrice, Journal of Applied Physics, vol.75, pp.4843-4850, 1994.

F. L. Teixeira and W. C. Chew, Lattice electromagnetic theory from a topological viewpoint, Journal of Mathematics and Physics, vol.40, pp.169-187, 1999.

P. D. Einziger, S. Raz, and M. Shapira, Gabor representation and aperture theory, Journal of the Optical Society of America A, Optics and Image Science, vol.3, issue.4, pp.508-522, 1986.

D. Lugara, C. Letrou, A. Shlivinski, E. Heyman, and A. Boag, Frame-based Gaussian beam summation method: Theory and applications, Radio Science, vol.38, pp.27-28, 2003.

J. J. Maciel and L. B. Felsen, Systematic study of fields due to extended apertures by Gaussian beam discretization, IEEE Transactions on Antennas and Propagation, vol.37, pp.884-892, 1989.

J. J. Maciel and L. B. Felsen, Discretized Gabor-based beam algorithm for time-harmonic radiation from twodimensional truncated planar aperture distributions .I. Formulation and solution, IEEE Transactions on Antennas and Propagation, vol.50, pp.1751-1759, 2002.

A. Chabory, J. Sokoloff, and S. Bolioli, Novel Gabor-based Gaussian beam expansion for curved aperture radiation in dimension two, Progress In Electromagnetics Research, vol.58, pp.171-185, 2006.

S. Mallat, A Wavelet Tour of Signal Processing, 1999.

B. Z. Steinberg and Y. Leviatan, On the use of wavelet expansions in the method of moments (EM scattering), IEEE Transactions on Antennas and Propagation, vol.41, pp.610-619, 1993.

T. K. Sarkar, M. C. Salazar-palma, and . Wicks, , 2002.

J. Fröhlich and K. Schneider, An adaptive wavelet-vaguelette algorithm for the solution of PDEs, Journal of Computational Physics, vol.130, pp.174-190, 1997.

M. Holmström, Solving hyperbolic PDEs using interpolating wavelets, SIAM Journal on Scientific Computing, vol.21, pp.405-420, 1999.

T. Hong and B. L. Kennett, On a wavelet-based method for the numerical simulation of wave propagation, Journal of Computational Physics, vol.183, pp.577-622, 2002.

A. Iqbal and V. Jeoti, A split step wavelet method for radiowave propagation modelling in tropospheric ducts, IEEE International on RF and Microwave Conference (RFM), pp.67-70, 2011.

A. Iqbal and V. Jeoti, Numerical modeling of radio wave propagation in horizontally inhomogeneous environment using split-step wavelet method, 4th International Conference on Intelligent and Advanced Systems (ICIAS), pp.200-205, 2012.

S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, pp.674-693, 1989.

S. Mallat, Multiresolution approximations and wavelet orthonormal bases of L 2 (R), Transactions of the American Mathematical Society, vol.315, issue.1, pp.69-87, 1989.

M. Frigo and S. G. Johnson, The design and implementation of FFTW3, Proceedings of the IEEE, vol.93, pp.216-231, 2005.

G. A. Deschamps, Gaussian beam as a bundle of complex rays, Electronics Letters, vol.7, pp.684-685, 1971.