Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Communication dans un congrès

Convolutional Neural Network for Multipath Detection in GNSS Receivers

Résumé : Global Navigation Satellite System (GNSS) signals are subject to different kinds of events causing significant errors in positioning. This work explores the application of Machine Learning (ML) methods of anomaly detection applied to GNSS receiver signals. More specifically, our study focuses on multipath contamination, using samples of the correlator output signal. The GPS L1 C/A signal data is used and sourced directly from the correlator output. To extract the important features and patterns from such data, we use deep convolutional neural networks (CNN), which have proven to be efficient in image analysis in particular. To take advantage of CNN, the correlator output signal is mapped as a 2D input image and fed to the convolutional layers of a neural network. The network automatically extracts the relevant features from the input samples and proceeds with the multipath detection. We train the CNN using synthetic signals. To optimize the model architecture with respect to the GNSS correlator complexity, the evaluation of the CNN performance is done as a function of the number of correlator output points.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-02359943
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : mardi 26 mai 2020 - 14:38:12
Dernière modification le : mercredi 3 novembre 2021 - 08:17:33

Fichier

Munin2020.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Evgenii Munin, Antoine Blais, Nicolas Couellan. Convolutional Neural Network for Multipath Detection in GNSS Receivers. AIDA-AT 2020, 1st conference on Artificial Intelligence and Data Analytics in Air Transportation, Feb 2020, Singapore, Singapore. ⟨10.1109/AIDA-AT48540.2020.9049188⟩. ⟨hal-02359943⟩

Partager

Métriques

Consultations de la notice

299

Téléchargements de fichiers

306