Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes

Abstract : The asymptotic analysis of covariance parameter estimation of Gaussian processes has been subject to intensive investigation. However, this asymptotic analysis is very scarce for non-Gaussian processes. In this paper, we study a class of non-Gaussian processes obtained by regular non-linear transformations of Gaussian processes. We provide the increasing-domain asymptotic properties of the (Gaussian) maximum likelihood and cross validation estimators of the covariance parameters of a non-Gaussian process of this class. We show that these estimators are consistent and asymptotically normal, although they are defined as if the process was Gaussian. They do not need to model or estimate the non-linear transformation. Our results can thus be interpreted as a robustness of (Gaus-sian) maximum likelihood and cross validation towards non-Gaussianity. Our proofs rely on two technical results that are of independent interest for the increasing-domain asymptotic literature of spatial processes. First, we show that, under mild assumptions, coefficients of inverses of large co-variance matrices decay at an inverse polynomial rate as a function of the corresponding observation location distances. Second, we provide a general central limit theorem for quadratic forms obtained from transformed Gaus-sian processes. Finally, our asymptotic results are illustrated by numerical simulations.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [49 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-02388266
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : dimanche 1 décembre 2019 - 16:08:39
Dernière modification le : mercredi 1 juin 2022 - 04:57:18
Archivage à long terme le : : lundi 2 mars 2020 - 15:56:11

Fichier

1911.11199.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

François Bachoc, José Daniel Betancourt, Reinhard Furrer, Thierry Klein. Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes. Electronic Journal of Statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2020, 14 (1), ⟨10.1214/20-EJS1712⟩. ⟨hal-02388266⟩

Partager

Métriques

Consultations de la notice

122

Téléchargements de fichiers

62