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Abstract—Airport security checkpoints are critical areas in air-
port operations. Airports have to manage an important passenger
flow at these checkpoints for security reason while maintaining
service quality. The cost and quality of such an activity depend on
the human resource management for these security operations.
An appropriate human resource management can be obtained
using an estimation of the passenger flow. This paper investigates
the prediction at a strategic level of the passenger flows at Paris
Charles De Gaulle airport security checkpoints using machine
learning techniques such as Long Short-Term Memory neural
networks. The derived models are compared to the current
prediction model using three different mathematical metrics. In
addition, operational metrics are also designed to further analyze
the performance of the obtained models.

Keywords—Airport operations, Machine Learning, LSTM net-
works, Airport security checkpoints, Passenger flow management,
Strategic prediction

I. INTRODUCTION
A. Motivation

Airport security checkpoints are key areas in airport op-
erations. All passengers are checked at security checkpoint
before entering the airside area. This continuous passenger
flow implies an appropriate human resource management,
which must satisfy two main objectives. A security checkpoint
must be reliable in terms of security, while maintaining a
predefined standard regarding passenger wait time. In addition,
airports try to minimize their cost providing the best possible
services.

At Charles De Gaulle airport, the human resources at
security checkpoints are managed at two levels. The first level
is a strategic level: Passenger flows at security checkpoints are
predicted 20 days upstream for the following month in order
to determine the appropriate number of agents required. The
second level is a tactical level: In real time, the agents are
distributed at the security checkpoints to provide the service.
This paper investigates new learning methods such as neural
networks in order to improve the prediction phase at the
strategic level.

These learning methods are applied to the checkpoints
within the zone of Charles De Gaulle airport corresponding
to Air France’s hub and named CDGE (cf. Figurel). It
contains eight security checkpoints, separated in three different
categories, depending on the type of passengers going through:

o Checkpoints handling only passengers with local flights:
C2F-Centraux

Paris-Charles de Gaulle

ol

GROUPE ADP

........

Figure 1: Overview map of Charles De Gaulle terminals

o Checkpoints handling only connecting passengers: C2E-
GalerieEF, C2E-Puits2E, C2E-PorteL.-CNT

o Checkpoints handling passengers on both local and con-
necting flights: C2E-PorteK, C2E-PorteL,, C2E-PorteM,
C2G-Depart

Checkpoints C2E-GalerieEF and C2E-PorteL-CNT have the
added particularity of linking two different terminals (E and
F). C2E-Puits2E has the specificity of handling connecting
passengers arriving to and leaving from Terminal E.

B. State of the art

Passenger flow prediction has been investigated for a long
time in transportation areas. An exhaustive review was done by
Liu et al [1]. Traffic flow prediction for public transportation
was studied in [2], [3], and for air transportation in [4], [5]
using various prediction methods. Time series models were
developed by Kumar [6] based on Kalman filtering, while
Williams and Hoel [7] and then Kumar and Vanajakshi [8]
worked on auto-regressive models. In the machine learning
field, regression models such as Support Vector Machines [2],
[4] or Neural Networks [1], [3] were used to forecast passenger
flow. So far, the models derived try to predict the passenger
flow using only historical data of the flow. Nevertheless, an
airport passenger flow is a complex process. Extra features
could be added in order to enhance the model performance.
Indeed, a model which includes information relative to the
arriving and departing flights should outperform basic time
series models. This motivates the use of machine learning
models, that can fit multidimensional inputs.



Optimization of security checkpoints at a tactical level has
also been thoroughly investigated. The efficiency of security
checkpoint systems and organizations is discussed by Wilson
et al. in [9] and by Leone and Liu in [10]. De Lange et
al. suggested creating virtual queuing in order to decrease
waiting time at peak periods [11]. However, to the best
of the authors’ knowledge, no study has been conducted
around the airport security checkpoint strategic passenger flow
prediction. Usually, each airport has its own process. Yet, the
methodology presented in this paper is generic and could be
applied everywhere. The only constraint is the availability of
information regarding departing and arriving flight and their
expected occupancy.

This paper is organized as follows: SectionII describes the
data considered, the features extracted from them and the
learning models used. In SectionIII the different models are
compared using both theoretical and operational performance
measures. An in-depth analysis is performed in Section IV for
two chosen checkpoints. Section V concludes this study and
suggests some possible improvements and future steps.

II. MODEL CREATION

This section presents the machine learning models chosen
for the following experiments as well as the data considered.

A. Machine Learning and Long Short-Term Memory Neural
Network

A learning process consists in using data analysis methods
and artificial intelligence to predict the behavior of a system.
The aim is to define a model that will fit as best as possible
the considered system. Machine learning algorithms define
learning models hgy, with parameters 6, that approximate the
system function. The learning process is done upon a finite
training set D, and aims at minimizing the error over the
training set by tuning the parameters 6 of the learning model
[12], [13], [14].

Various learning models exist in the literature and for
various real-world applications, and in this paper the choice of
a particular neural network named Long Short-Term Memory
(LSTM) was made and compared to a Random Forest model.
LSTM networks were designed as an enhancement of Recur-
rent Neural Networks (RNN) to perform better supervised
learning task on time series data [15], [16], [17]. LSTM
are capable of learning long-term dependencies, while simple
RNN only learn short term dependencies. LSTM use a cell
state that keeps information from the past, and three gates
that update the cell state and compute the prediction. First, the
forget gate enables updating the cell state in order to forget
information that are no longer relevant based on the current
input. Second, the input gate enables saving in the cell state
relevant information from the current input. Finally, the output
gate computes the prediction using the updated cell state and
the current input. A simplified illustration of a LSTM structure
is depicted in Figure 2.

Cell State & D Cell State
(step n-1) ! g \ ' 4 (step n)
4
N -
Forget Input Ouput 2\
Gate Gate Gate > ‘
A T
Prediction s Prediction
(step n-1) (step n)
Input
(step n)

Figure 2: Simplified illustration of the structure of a LSTM
cell

B. From data to features

In this study, the values to predict correspond to the real
passenger count at each Safety Checkpoint per ten minute
period. As explained in Section I, the original input dataset
used by Charles De Gaulle operational experts is composed
with information relative to the schedule and occupancy of
arriving and departing flights aggregated per five minute
periods.

The dataset starts on February, 1% 2017 and ends on March,
31 2019. Data from both 2017 and 2018 were used for the
training phase, and the data from 2019 for the validation phase.
For each flight, there are three passenger count expectations
corresponding to:

« the expected number of connecting passengers
o the expected number of local passengers
« the expected total number of passengers

These passenger counts are given by the airlines to the airport.
In addition, there are various information such as the date, the
status of the flight (departing or arriving flight), the airport
terminal, the airline, the origin airport, the aircraft type, the
departure geographic area, the flight range, and the check-in
terminal.

Categorical features were represented using one-hot en-
coding. Additional features were extracted to complete the
passenger count expectations. Passenger count expectations
were aggregated per terminal, per status, and per terminal and
status to create new features. Besides, features relative to the
date were created: the month of the year, the day of the month,
the day of the week, the hour of the day and the minute of
the hour, and categorical variables for weekends, aeronautical
weekends (including Fridays), holidays, and public holidays.
Additional categories were created to capture whether a day
is just before or after a public holiday or is the first or last
day of a holiday.

This feature extraction yields a vector of 371 features for
every five minutes of data. This vector sums-up the informa-
tion over all the flights during the corresponding five minute
period. The LSTM neural network was then fed with a time
series corresponding to the input feature vector ranging from
three hours before to five hours after the output 10 minutes
time period. This time range was chosen based on two real-



world considerations in order to encompass all the relevant
flight and passenger information. On the one hand, airlines
and airports recommend passengers on international flights to
arrive about three hours before their flight departure time. On
the other hand, the transfer time between two flights seldom
exceeds five hours.

C. Network Architecture and Learning

This section describes the neural network architecture used
in the experiments. The neural network is composed of two
layers and a regression output layer. The first layer is a batch
normalization. The second layer is a LSTM layer with 200
units and a sigmoid activation function. The layer also contains
a dropout to regularize the network. The output layer is a
single neuron dense layer with a ReLU activation function.
This architecture will be referred to as LSTM200. Figure 3
illustrates the network architecture.
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Figure 3: Description of the neural network LSTM200 archi-
tecture used in the experiments

The learning task was made using Adam optimizer [18]
with a decay. The learning rate is 10~2 and the decay is 10~°.
Networks were trained during 10 epochs over the training set
on a multi-GPU cluster. The cluster is composed of a dual
ship Intel Xeon E5-2640 v4 - Deca-core (10 Core) 2,40GHz
- Socket LGA 2011-v3 with 8 GPU GF GTX 1080 Ti 11 Go
GDDR5X PClIe 3.0.

D. Penalized Loss

In practice, passenger count overestimation is costly. There-
fore, a custom loss was designed. The loss aims to minimize
overestimation by penalizing the positive part of the mean
square error (MSE). As a reminder, the mean square error is
the usual loss for regression problems. Let D be the training
set, and h the learning model. The MSE of h over D is detailed
in equation (1):

MSE(h, D) = ﬁ -

Let £ = h(x) — y be the error of a sample (x,y) € D. E,
is the positive part of this error, and E_ the negative part. The
a-Penalized MSE is defined in equation (2) with o € R:

> (bx)—y)? (1)

(z,y)€D

a-PMSE(h, D) = — .

(z,y)€D
E. Model Summary

For this study, three models were used. The first model
is a LSTM200 architecture trained with the MSE loss. The
second model is a LSTM200 architecture trained with a 0.5-
PMSE loss. The last model is a Random Forest model trained
with MSE loss using the scikit-learn library [19]. The hyper-
parameters of the Random Forest models were set to 40 for the
number of estimators, with a max depth of 10, and a minimum
sample split of 2. The three models are summarized in Table L.

Table I: Summary of the three models used in the paper

Model Name Model Type Loss
LSTM (MSE) LSTM200 MSE
LSTM (0.5-PMSE) LSTM200 0.5-PMSE

RF Random Forest MSE

Additionally, in order to assess the effect of the hour of
the day on the robustness of the chosen models, these models
were trained twice: a first time with the hour of the day as a
feature, and a second time without that feature.

ITI. MODEL COMPARISON
A. Performance metrics

1) Theoretical metrics: In order to compare the perfor-
mance of the different models, three different indicators were
used: the R? score, the mean-absolute error (MAE) and a daily
Pearson correlation score (DPC).

The R? score, also known as the coefficient of determina-
tion, is defined as the unity minus the ratio of the residual sum
of squares over the total sum of squares:

Y@yeny — h(@)?

R2(h,D)=1— —
( ) Z(J,,y)ED(y - y)2

3)

where y is the value to be predicted, ¢ its mean and h(x)
is the model prediction and D the dataset. It ranges from
—oo to 1, 1 being a perfect prediction and 0 meaning that
the prediction does as well as constantly predicting the mean
value for each occurrence. In the case of a negative R?, then
the model has a worse prediction than if it were predicting the
mean value for each occurrence and therefore yields no useful
predictions.

Regarding the mean-absolute error, the smaller its value is,
the more accurate the prediction is. It is calculated using the
following formula:



1
MAE(h, D) = > (@) -y )
(z,y)€D

The daily Pearson correlation score is an average of the
usual Pearson correlation score applied to non-overlapping
subsets Dy of D, with each subset D, containing the data
from an entire day d and D = (J, , Dgy. It gives an indication
of how well the curve of the predicted number of arriving
passenger follows the actual curve of arriving passengers. The
closer the score is to 1, the better the prediction is. It is
calculated using the following equations:

Z(m,y)EDd (h(z) — Bd)(y — Ya)

T‘(h, Dd) = —
\/Z(m,y)EDd(h(x) - hd)Q\/Z(x,y)eDd (y — 7a)?
(5)
DPC(h,D) = ﬁ > r(h, Da) (6)
Dg

where hg (resp. 7q) is the average of h(z) (resp. y) over Dy.

2) Operational metrics: Airport management being a bal-
ance between minimizing costs and maximizing the service
given to passengers, two additional metrics were introduced
based on these operational considerations. These metrics are
simplified versions of reality since the security agent providers
do not share their calculation processes and the actual staffing
of checkpoints is decided at a tactical level.

From a cost perspective, the key figure is the number of
security agents necessary for a smooth operation. Agents being
paid per hour, the cost metric considered is the total number
of agent-hours induced by the predicted passenger arrivals. A
smooth operation is here defined as a nominal passenger flow
fn, which has a unit of passengers per line per ten minutes.
These flows are specific to each security checkpoint and are
determined by the airport management. Airports also define
a peak-time passenger flow fp that security agents should be
able to cope with when needed. From these nominal flows
and the number of expected passengers p; at time step ¢, it is
then possible to compute the number of lines n; required to
achieve this flow: n, = Jf—;. Assuming that each line is staffed
by five security agents yields the number of agents required
at each time step ¢. Each time steps being of ten minutes, it
is then necessary to divide the resulting cost by six to obtain
the agent-hour cost. The total cost metric C'r can be resumed
by the following equation:

_d\ P
CT—GE;JCN (7)

From a quality perspective, the key figure is the average
waiting time at the security checkpoints. In order to estimate
it at each time step, the following simplified queuing model is
considered. At time step ¢, y; passengers arrive at the check-
point SC adding to the r,_; passengers not processed during
the previous time step. Under nominal conditions, n; - fx
passengers are processed during a ten minute time step, where
n; is the number of lines estimated for the cost calculation.

Peak-time conditions were defined here as time steps where
the remaining number of passengers r;_; was greater than the
nominal flow fn. Under peak-time conditions, the number
of processed passengers becomes max(n;_1,n¢) - fp, i.e. the
number of lines kept open stays the same if it was initially
supposed to become smaller. If the prediction indicated that
no lines should be open and that there are in fact passengers,
then either the lines open in the previous time step are kept
open if any, or one line is opened.

The processed number of passengers 7; at time step ¢ can
therefore be calculated as followed:

max(ni_1,n¢) - fp if ry_1 > fn and ny > 0

S ng_1- fn if n,=0and ns;_1 >0
t In if ng =0
ny - fn otherwise

®)
The average wait time 7, during a time step ¢ can be
computed using the following equation:

Yt+re—1 .

{ Yo+ 11+ 1
SIS o
Tt

i=1

9
o €))
The overall quality metric Q7 is then calculated by taking the
average of all 7.

The passenger flow model at a checkpoint is represented as
an automata in Figure 4.

Tt—1
Ye @ Tt
Figure 4: Model of the passenger flow at a security checkpoint

B. First results

All three models presented in SectionII were trained using
data from February 2017 to December 2018 and tested on
the months of January to March 2019 using the performance
metrics presented in SectionIII-A. These metrics were also
applied to the current model in use at Charles De Gaulle airport
for comparison. Based on operational observations, the output
of the neural nets was forced to 0 when the hour of the day
was between 00:00 and 04:00.

1) Hour of the day: Table II summarizes the performances
of the three developed learning models based on two of
the three mathematical metrics. This table enables a quick
comparison of the use of the hour of the day as a feature.
For the upcoming analysis, only one LSTM model and one
Random Forest regressor were kept per checkpoint based on
their MAE. The kept models have their performance cells
highlighted in green, while the best of all models are also
highlighted in bold. A first observation is that the influence of
the hour of the day is not the same for Random Forests and
for neural networks. For seven checkpoints over eight, using
the hour of the day highly improves the Random Forest’s



Table II: Comparison of the models using or not the hour in the training set. Green color cells correspond to the model kept
in the following study. Bold cells correspond to the best models

LSTM (MSE) LSTM (0.5-PMSE) Random Forest
With Hour Without Hour With Hour Without Hour With Hour Without Hour

R2 MAE R2 MAE R2 MAE R? MAE R? MAE R? MAE
C2G-Depart 0.736 4.02 0.732 4 0.768 3.75 0.754 3.85 0.721 4.27 0.712 4.68
C2E-PorteM 0.822 11.08 0.887 9.02 0.796 11.92 0.866 9.82 0.853 11.68 0.808 17.34
C2E-PorteLl 0.674 13.96 0.641 14.58 0.578 15.8 0.636 14.67 0.684 14.21 0.558 19.58
C2F-Centraux 0.834 18.34 0.861 16.79 0.851 17.34 0.86 16.62 0.788 21.48 0.826 21.08
C2E-PorteL-CNT 0.436 16.54 0.474 16.14 0.426 16.6 0.425 16.49 0.471 16.36 0.475 17.62
C2E-GalerieEF 0.667 15.32 0.667 15.46 0.656 15.46 0.626 15.95 0.68 15.61 0.608 20.03
C2E-Puits2E 0.411 3.77 0.37 3.76 0.395 3.78 0.375 3.77 0.405 4.09 0.381 4.56
C2E-PorteK 0.688 18.37 0.758 15.63 0.662 15.67 0.769 15.26 0.726 16.73 0.647 23.53

performance. On the other side, six checkpoints over eight
with LSTM (MSE and 0.5-PMSE) have better scores without
the hour of the day.

2) Mathematical Performance Metrics: FigureS presents
the performance of the current model and the kept models
from Section III-B1 using the mathematical metrics introduced
in Section ITI-A1. From a R? score perspective, both the LSTM
and Random Forest models outperform the current prediction
model with improvements ranging from 0.01 for C2E-PorteM
to 0.3 for C2E-PorteL-CNT. Regarding the mean-absolute
error performance, the LSTM nets outperform once more the
current model while the Random Forest regressors have higher
errors for two of the checkpoints (C2E-PorteM and C2E-
Puits2E). The LSTM reduces the mean-absolute errors from
5.6% (C2E-Puits2E) to 18.9% (C2E-PorteM) compared to the
current model: LSTM net have a mean-absolute error of less
than seventeen passengers per ten minutes for all checkpoints
while the current model has an error greater than seventeen
passengers per ten minutes for half of the checkpoints. Finally,
regarding the daily Pearson correlation score, LSTM model
outperforms the current prediction model at every checkpoint,
while the Random Forest regressor outperforms it for seven
checkpoints out of eight.

3) Operational Performance Metrics: Using the simplified
operational metrics introduced in Section III-A2, the difference
in performance is less straightforward. Figure 6 shows the
comparison of the cost metric (i.e. the number of agent-hour
over the three months) per checkpoint as well as the compar-
ison of the quality metric. Figure 6a presents the comparison
of the total number of predicted passengers per checkpoints
along with the actual number of passengers for comparison. A
first observation is that the LSTM nets tend to underestimate
the number of passengers regardless of the loss function
considered, while the Random Forest regressors overestimate
the number of passengers.

Since LSTM nets tend to underestimate the number of pas-
sengers more than the current model, it is also reflected from
a cost perspective in Figure 6b: For seven of the checkpoints,
the number of agent-hours required based on the neural nets is
less than the number required based on the current model. For
C2E-Puits2E, the number of required agent-hours is greater
than the current model, a paradox illustrating the specificity
of that terminal and further analyzed in SectionIV.

4) Synthesis: Figure 7 shows the performance difference
between the neural networks and the current prediction model,
for all the metrics, and all the security checkpoints. All the
metrics are normalized by the current prediction model value,
except for the R? score, and the correlation score since they
already have consistent magnitude and a norm lower than
1. The normalization enables comparison between security
checkpoints. The difference is explained in percentage of
improvement relative to the current model, except for the R?
score and the correlation score where it is the improvement
difference in percentage (norm lower than 1). In addition,
the performance sign is selected such that a positive sign
corresponds to a metric improvement. Finally, the performance
difference is displayed with color from green when the im-
provement is greater than 20% to red when the best model
deteriorates the performance more than 20%

For three security checkpoints over eight (C2G-Depatrt,
C2E-PorteM, C2F-Centraux), LSTM models outperforms the
current prediction model for all the performance metrics.
For four over eight (C2E-PorteL, C2E-PorteL-CNT, C2E-
GalerieEF, C2E-PorteK) LSTM models outperform current
model for all the metric excepted the waiting time metric,
which is deteriorated more than 10% in half of the cases
(C2E-GalerieEF, C2E-PorteK). Finally, at security checkpoint
C2E-Puit2E, the performance metric is highly deteriorated for
the agent number (-29%) and waiting time (-12.9%). This
particular behavior will be explained in SectionIV.

IV. CASE STUDY

In this section, two security checkpoints were selected with
respect to their performances for a further analysis. C2G-
Depart was chosen to illustrate the good results of the LSTM
model while C2E-Puits2E was chosen to better understand
why the LSTM model does not outperform the current model
from an operational perspective.

A. Daily analysis

A first step in understanding the differences in performance
is to analyze the performances of the two models (LSTM and
current) on a less aggregated level such as the different days of
the week. Figure 8 shows the distribution of the daily Pearson
correlation score per day of the week for the two chosen
security checkpoints. It confirms the previous observation that
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Figure 7: Heatmap visualization of the performance difference
between the LSTM models and the current predictive model

the LSTM model is overall better than the current model
with this metric, while adding some information on how this
improvement is structured.

Regarding C2G-Depart, Figure 8a shows that both models
are less precise on Saturdays compared to other days, though
the LSTM model reduces the score variability on that day. An
important improvement can be seen for Sundays: the current
model has a lower score with a large variability, whereas the
LSTM model reduces drastically that variability and improves
the median score of 0.1.

Regarding C2E-Puits2E, Figure 8b shows that the LSTM
model manages to reduce variability on most days, with an
important reduction on Fridays. Wednesdays show an opposite
behaviour: though the LSTM model does increase the median
correlation score, it also triples the score variability.

B. Hourly analysis

A similar analysis can be conducted by aggregating the
performance metrics per hour of the day. Figure9 shows
the hourly distribution of the error in predicting the number
of arriving passengers for the current model and the LSTM
model at the two chosen security checkpoints. It confirms the
LSTM’s tendency to underestimate the number of passengers:
All medians are at or below zero for the LSTM while the
current model tend to overestimate for five hours out of the
sixteen considered hours for C2G-Depart. For C2E-Puits2E,
both models have median errors at or below zero, however
the LSTM model variations are shifted towards the negative
with a smaller tendency to overestimation, which is indicated
by smaller upper whiskers. This underestimation can be seen
as a lower cost, since the predicted number of passengers
determines the number of required agents.

Figure 10 shows the hourly distribution of the average wait
time using the predictions from the current model and the
LSTM model. Combining Figures 10 & 9 makes the impact of
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Figure 8: Daily correlation distribution per day of the week
for C2G-Depart and C2E-Puits2E

underestimation clearer on the quality of service. Underes-
timations in the number of passengers is associated with a
higher median average wait time, which is then propagated in
the following hours. For C2G-Depart, the underestimations at
3pm and 7pm on Figure 10a are clearly associated with a rise
and propagation of the average wait time on Figure 9a. For
C2E-Puits2E, it is most visible for the underestimation at 7am
for both models.

This analysis could be used to further improve the derived
models and the determination of the number of required
agents. By highlighting hours of the days where the models
are known to underestimate (resp. overestimate) the number
of passengers, it should be possible to mitigate this underesti-
mation (resp. overestimation) by adjusting the predicted value
or by adapting accordingly the number of required agents for
these specific periods.

In order to better understand the differences in performance
for these two checkpoints, the estimated number of passengers
is plotted over a day (January 16th, 2019) in Figure 11 for
C2E-Puits2E and in Figure 12b for C2G-Depart. Figure 11
highlights the difficulty of predicting the number of passengers
for C2E-Puits2E: There are irregular yet continuous arrival
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Figure 9: Hourly passenger error boxplots comparison between
the current model and the neural net trained with a mean
squared error loss function at two different checkpoints

spikes in the early morning (5am-9am) and then the rest of
the day is composed of arrival spikes of varying amplitudes
with periods with no passengers at all. From a prediction per-
formance perspective, Figure 11 clearly illustrates the paradox
of predicting less passengers while requiring more agents. The
LSTM model underestimates more the passenger arrival spikes
in the early morning than the current model, and estimates a
low number of passengers for the rest of the day though never
predicting zero arrivals. This means that agents are required
all day long from the LSTM perspective, while the current
model captures better the periods with no arrivals, enabling
an economy of agents. A potential improvement of the LSTM
model would be to hardcode the periods where operational
expertise indicates that transfers within Terminal E are highly
unlikely.

Regarding C2G-Depart, Figure 12b is a good day example
to understand the better performance of the LSTM model
compared to the current model. There are four daily spikes
in passenger arrival with varying amplitude, and though both
models capture the number of spikes, the LSTM model yields
a better estimation of the amplitude of each spike as well as
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Figure 10: Hourly average wait time boxplots comparison
between the current model and the neural net trained with a
mean squared error loss function at two different checkpoints
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Figure 11: Hourly comparison of the predicted number of
passengers between the current model and the neural net at
C2E-Puits2E on January 16th 2019
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Figure 12: Hourly comparison between the current model and
the neural net trained with a mean squared error loss function
at C2G-Depart on January 16th 2019

their initial slope increase. This higher accuracy has a direct
impact on the estimated wait time, as shown in Figure 12a. The
average wait time is identical for both model until the fourth
spike, where the better estimation of the increase in passengers
triggers the opening of a second line, which reduces the wait
time by half compared to the current model.

strategic passenger flow prediction would surely reduce oper-
V. Di1SCuUSSION & CONCLUSION

This paper investigated predicting passenger flow at Paris
Charles De Gaulle airport security checkpoints using LSTM
neural networks. The models performance was evaluated over
several theoretical and operational metrics. The overall results
are promising since LSTM models outperform the current
model for every checkpoints using the theoretical metrics and
for three checkpoints out of eight, LSTM models outperform
the current prediction model using all the considered metrics.
Though the considered operational metrics were simplified,
these results illustrate that implementing a better and accurate

ational cost while maintaining predefined standard regarding
passengers waiting time.

The methodology presented in this study can still be en-
hanced and tuned to be efficient and dedicated on specific
cases. Future works should investigate a more elaborated
queuing model or simulation. In addition, the models could be
validated with real experimentation in the operations. Further
works could be done on the neural network architecture and
learning, or with expert to tune the models bringing relevant
information to improve the prediction (hybrid models).
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