Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Approach and landing aircraft on-board parameters estimation with LSTM networks

Abstract : This paper addresses the problem of estimating aircraft on-board parameters using ground surveillance available parameters. The proposed methodology consists in training supervised Neural Networks with Flight Data Records to estimate target parameters. This paper investigates the learning process upon three case study parameters: the fuel flow rate, the flap configuration, and the landing gear position. Particular attention is directed to the generalization to different aircraft types and airport approaches. From the Air Traffic Management point of view, these additional parameters enable a better understanding and awareness of aircraft behaviors. These estimations can be used to evaluate and enhance the air traffic management system performance in terms of safety and efficiency.
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-02506741
Contributeur : Gabriel Jarry Connectez-vous pour contacter le contributeur
Soumis le : jeudi 12 mars 2020 - 15:12:17
Dernière modification le : mercredi 3 novembre 2021 - 08:11:54
Archivage à long terme le : : samedi 13 juin 2020 - 16:04:57

Fichier

Conf_Prediction.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Gabriel Jarry, Daniel Delahaye, Eric Féron. Approach and landing aircraft on-board parameters estimation with LSTM networks. AIDA-AT 2020, 1st conference on Artificial Intelligence and Data Analytics in Air Transportation, Feb 2020, Singapore, Singapore. pp.ISBN: 978-1-7281-5381-0, ⟨10.1109/AIDA-AT48540.2020.9049199⟩. ⟨hal-02506741⟩

Partager

Métriques

Consultations de la notice

212

Téléchargements de fichiers

829