R. V. Jategaonkar and F. Thielecke, Aircraft parameter estimation-a tool for development of aerodynamic databases, Sadhana, vol.25, issue.2, pp.119-135, 2000.

B. P. Collins, Estimation of aircraft fuel consumption, Journal of Aircraft, vol.19, issue.11, pp.969-975, 1982.

A. Nuic, User manual for the base of aircraft data (bada) revision 3.7, Atmosphere, vol.2010, p.1, 2010.

D. A. Senzig, G. G. Fleming, and R. J. Iovinelli, Modeling of Terminal-Area Airplane Fuel Consumption, Journal of Aircraft, vol.46, issue.4, pp.1089-1093, 2009.

E. Clemons, T. Reynolds, S. Badrinath, Y. Chati, and H. Balakrishnan, Enhancing aircraft fuel burn modeling on the airport surface, p.2018

, Aviation Technology, Integration, and Operations Conference, p.3991, 2018.

E. T. Turgut, Estimating aircraft fuel flow for a three-degree flightpath-angle descent, Journal of Aircraft, vol.48, issue.3, pp.1099-1106, 2011.

G. B. Chatterji, Fuel burn estimation using real track data, 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, including the AIAA Balloon Systems Conference and 19th AIAA Lighter-Than, p.6881, 2011.

N. W. Simone, M. E. Stettler, and S. R. Barrett, Rapid estimation of global civil aviation emissions with uncertainty quantification, Transportation Research Part D: Transport and Environment, vol.25, pp.33-41, 2013.

R. Alligier, D. Gianazza, and N. Durand, Ground-based estimation of aircraft mass, adaptive vs. least squares method, ATM Seminar, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00911686

R. Alligier, D. Gianazza, M. G. Hamed, and N. Durand, Comparison of two ground-based mass estimation methods on real data, ICRAT 2014, 6th International Conference on Research in Air Transportation, pp.pp-xxxx, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01002401

D. Delahaye and S. Puechmorel, Tas and wind estimation from radar data, 2009 IEEE/AIAA 28th Digital Avionics Systems Conference, p.2, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00938201

, Aircraft local wind estimation from radar tracker data, 2008 10th International Conference on Control, Automation, Robotics and Vision, pp.1033-1038, 2008.

J. Sun, J. Ellerbroek, and J. M. Hoekstra, Aircraft initial mass estimation using bayesian inference method, Transportation Research Part C: Emerging Technologies, vol.90, pp.59-73, 2018.

Y. S. Chati and H. Balakrishnan, A gaussian process regression approach to model aircraft engine fuel flow rate, Proceedings of the 8th International Conference on Cyber-Physical Systems, pp.131-140, 2017.

, Statistical modeling of aircraft engine fuel flow rate, 2016.

A. A. Trani, F. Wing-ho, G. Schilling, H. Baik, and A. Seshadri, A Neural Network Model to Estimate Aircraft Fuel Consumption, 2004.

N. Peyada and A. Ghosh, Aircraft parameter estimation using a new filtering technique based upon a neural network and gauss-newton method, The Aeronautical Journal, vol.113, issue.1142, pp.243-252, 2009.

, Aircraft parameter estimation using neural network based algorithm, AIAA atmospheric flight mechanics conference, p.5941, 2009.

Z. Shi, M. Xu, Q. Pan, B. Yan, and H. Zhang, LSTM-based Flight Trajectory Prediction, pp.1-8, 2018.

H. Zhang and T. Zhu, Aircraft Hard Landing Prediction Using LSTM Neural Network, Proceedings of the 2Nd International Symposium on Computer Science and Intelligent Control, ser. ISCSIC '18, vol.28, pp.1-28, 2018.

V. Vapnik, Adaptive and learning systems for signal processing, communications, and control, 1998.

T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, The elements of statistical learning: data mining, inference and prediction, The Mathematical Intelligencer, vol.27, issue.2, pp.83-85, 2005.

V. Vapnik, The nature of statistical learning theory, Springer science & business media, 2013.

Y. Bengio, P. Simard, and P. Frasconi, Learning long-term dependencies with gradient descent is difficult, IEEE transactions on neural networks, vol.5, issue.2, pp.157-166, 1994.

F. A. Gers, J. Schmidhuber, and F. Cummins, Learning to forget: Continual prediction with lstm, 1999.

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural computation, vol.9, issue.8, pp.1735-1780, 1997.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.