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Abstract—Airports across the world are expanding by building
multiple ground control towers and resorting to complex taxiway
and runway system, in response to growing air traffic. Current
outcome- based ground safety management at the airside may
impede our potential to learn from and adapt to evolving
air traffic scenarios, owing to the sparsity of accidents when
compared with number of daily airside operations. To augment
airside ground safety at Singapore Changi airport, in this study,
we predict dynamic hot spots- areas where multiple aircraft may
come in close vicinity on taxiways, as pre-cursor events to airside
conflicts. We use airside infrastructure and A-SMGCS operations
data of Changi airport to model aircraft arrival at different
taxiway intersections both in temporal and spatial dimensions.
The statistically learnt spatial-temporal model is then used to
compute conflict probability at identified intersections, in order to
evaluate conflict coefficients or hotness values of hot spots. These
hot spots are then visually displayed on the aerodrome diagram
for heightened attention of ground ATCOs. In the Subjective
opinion of Ground Movement Air Traffic Controller, highlighted
Hot Spots make sense and leads to better understanding of
taxiway movements and increased situational awareness. Future
research shall incorporate detailed human-in-the-loop validation
of the dynamic hot spot model by ATCOs in 360 degree tower
simulator.

Index Terms—Airside Operations; Taxiway; Hot spot; Singa-
pore Changi Airport

I. INTRODUCTION

International Civil Aviation Organisation (ICAO) monitors
aviation safety under its’ Global Aviation Safety Plan (GASP)
[1]. After analysing safety incidents that have occurred in the
current decade, ICAO has identified three high-risk accident
occurrence categories viz. Runway Safety (RS) related events,
Loss of Control In-Flight (LOC-I) and Controlled flight into
terrain (CFIT). In its’ latest report (in year 2019), ICAO
has published that RS related events, which includes ground
collision and collision with obstacles, accounted for nearly
half of all accidents in 2017 and 2018. In fact, RS related
events lead to the highest percentage of the accidents which
destroyed or caused substantial damage to aircraft (see Fig.
1). With air traffic levels expected to double in next two
decades [2], airports across the world will witness upsurge

in airside ground movements as a direct result of increased
arrivals and departures. Moreover, to cater to the growing
traffic, airports are expanding and augmenting their air traffic
control capabilities by building multiple airport control towers
and resorting to complex taxiway and runway system designs.
Aviation authorities have expressed their predicaments about
airports’ and air traffic control’s current incapability to cope
up with the growing demand [2]; and if not prepared for, well
in advance, this may clearly lead to much higher RS related
incidents. The unprecedented traffic growth coupled with
complex airside design shall pose serious threats to the safety
of day-to-day ground operations. Thus, there is a growing and
urgent need of research in this area to equip Airport traffic
controllers (ATCOs) and pilots for the future safety challenges.
In other words, research efforts that can assist ATCOs and
pilots in identifying safety challenges, before accidents even
may occur, will be vital for efficient and safe airport airside
operations.

Although, ICAO has been analysing and publishing safety
reports every year (since 2011), its’ appraisal of global and
regional aviation safety is based on outcome (incidents or ac-
cidents) metrics, that draws inspiration from long-established
view on safety as absence of loss or unsafe incidents. As
such, owing to the sparsity of accidents when compared
with number of daily airside operations, this current safety
management approach may impede our potential to learn
from daily operations, moving ahead into the future. Aviation
safety management therefore, must shift from a compliance-
based approach to a performance-based approach [3]. In other
words, the reactive traditional view of safety, as absence
of accidents (safety compliant), needs to transition towards
a proactive monitoring of indicators [4], [5] of safety per-
formance (performance-based). This will help to proactively
identify and prevent errors in the quickly evolving traffic
scenarios on airports.

The biggest enabler to the proactive incident identification,
would be our ability to learn from daily airside ground surveil-
lance data and tools that assist ground safety monitoring.
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Fig. 1. Contribution of RS related events (including collision with obstacles
and ground collisions) to fatalities and aircraft damage. RS: Runway Safety
related events, LOC-I: Loss of Control In-Flight and CFIT: Controlled flight
into terrain. Source: ICAO global aviation safety report, 2019.

Advanced Surface Movement Guidance and Control System
(A-SMGCS), is one such tool that, provides surveillance on
the runway, taxiways, stands etc. to ATCOs. A-SMGCS data
contains second by second update of all ground movements
captured by a full suite of cooperative (like Multilateration,
ADS-B, Vehicle Tracking systems, Secondary Surveillance
Radar) & non-cooperative (like Surface Movement Radar,
Primary Surveillance Radar) sensors. These sensors capture
information about ground vehicles and aircraft on the ma-
neuvering area, like aircraft/vehicle identification, flight plan,
type of aircraft, location, and time stamps. This information
has been used, in the past research [6], to model aircraft’s
spatial temporal movement on airport-airside from the as-
signed source to destination. This model can now be leveraged
to statistically predict the concurrent presence of multiple
aircraft in the close vicinity- hot spots, which may be closely
monitored as precursor events by ATCOs to prevent ground
collisions and conflicts.

II. LITERATURE REVIEW

A. Hot Spots

ICAO defines a hot spot to be a “location on an airport
movement area with a history of potential risk of collision or
runway incursion, and where heightened attention by pilots
and drivers is necessary” [7]. Conventionally, a hot spot (refer
Fig. 2) is a complex or confusing taxiway-taxiway or taxiway-
runway intersection where surface incidents in past have taken
place. These incidents typically occur as a result of problems
in airport layout, traffic flow, airport markings, situational
awareness etc. Identification and subsequent publication of
airport hot spots, as evidence suggests, raises runway threat

awareness [8]. Displaying hot spot information on airport
diagram, alerts airport users of any unsafe areas and assists
them in planning ground movements. By proper planning
of ground movements, pilots and ATCOs add safety nets to
overall airport operations.

Fig. 2. Hot spots at Singapore Seletar Aerodrome. Static hot spots, owing to
their generic nature, are of limited use for aircraft not maneuvering through
them.

Fig. 2 represents four regions identified as hot spots at
Singapore Seletar Aerodrome. Aerodrome users are cautioned
to manoeuvre through these regions with due care and extra
precautions. However, these static hot spots are of limited
use for aircraft not maneuvering through them. Moreover,
these regions become prone to collisions only under certain
circumstances which are detailed in the explanatory notes
accompanying the hot spot chart.

B. Runway Incursions

Owing to high energy (landing/take-off) aircraft interactions
at runways, incursions have garnered a lot of academic in-
terest. In particular, runway incursions are ”occurrences at
an aerodrome involving the incorrect presence of an aircraft,
vehicle or person on the protected area of a surface desig-
nated for the landing and take off of aircraft” [7]. Runway
incursions are precursor events or causal factors of runway
collisions. The underlying assumption in studying incursions,
is that by reducing the number of runway incursions, airport
users can bring down runway collisions, as well. Although
pilot deviations, and/or vehicle/pedestrian deviations cause
majority of the incursions, FAA statistics reveals that the
operational errors (related to ATCOs) and pilot deviations
make up the major part of the serious runway incursions of
types A and B [9]. Researchers in [10] performed statistical
analysis to determine relationship between airport geometry
factors and the number of runway incursions. They found
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Fig. 3. Concept diagram for dynamic hot spot prediction model, illustrating interactions between spatial (blue box) and temporal (green box) sub-components
which are employed on a day’s scheduled operations to obtain dynamic hot spots on taxiways.

intersecting runways, number of crossing taxiways per runway
and the number of runway intersections per runway to be
significantly impacting incursion rates. Drifting further from
the standard outcome based analysis of safety events on the
runway, researchers in [11] assessed runway incursions using
agent-based dynamic risk modelling to determine collision
probability.

Incursion avoidance research fundamentally observes two
kinds of approaches- stopping an aircraft from entering an
active runway; and detecting an imminent runway incursion
as early as possible [9]. Current methods employ safety
alerts against operational errors such as raising alarms when
Air Traffic Controllers (ATCOs) commission more than one
aircraft to use an active runway. Humans (expert ATCOs)
play an important role in current runway incursion prevention
systems and it is found that situational awareness is key to
prevent incursions. Final Approach Runway Occupancy Signal
(FAROS) and Runway Status Lights (RWSL), for instance,
have been found to reduce runway incursions by 70% at the
Dallas/Fort Worth International Airport. Preventing runway
incursions, therefore largely depend on the surveillance system
that provides input to the systems and/or ATCs dealing with
this problem. Much of the effort has thus gone into develop-
ment of a reliable, effective and accurate surveillance system

with a coverage of the maneuvering area of an airport [12]–
[15].

C. Taxiway Incurions
Taxiway surveillance data, in the past studies, has been

used to model stochastic airside operations. Researchers in
[16], modelled aircraft manoeuvre on taxiways, using Airport
Surface Detection Equipment, Model X (ASDE-X) data. They
modelled taxiway travel time based on probability distributions
i.e. unimpeded taxiway travel time using Erlang distribution;
number of stops as geometric random variable; and stationary
time corresponding to these stops as exponential random
variable; after observing ground movements. Using the model,
the authors could maintain steady traffic level with significant
reduction in aircraft surface fuel burn. Airport surveillance
radar data has also been used to assess ground movements for
safety [17], [18] purposes. For instance, [18] quantitatively
modelled collision likelihood between aircraft using twelve
week ASDE-X data of 35 US airports. As a proxy for colli-
sions, the study identified potentially hazardous interactions
(PHIs) between taxiing aircraft where the separation and
convergence dynamics indicate a non-negligible probability
of collision. The results showed that congestion near runway
hold lines and at transitions between taxiways and ramps
were the most commonly observed symptoms of increased



Fig. 4. Methodology to predict hot spots using airside infrastructure and A-SMGCS operations data.

collision potential. Recently, [19] used aerodrome surveillance
radar (ASR) data to identify conflicts. Conflicts, in their
model, arose when safe separation and heading threshold was
violated between 2 aircraft, using the same taxiway. Clearly
most of these studies, are performed with objectives like
reducing delays [20] [21], emissions etc. which do not have
safety as their prime concern. Consequently, the suggested
operations, do not adress safety concerns. Other the other hand
in the past research studies, where authors have focused on
safety issues, these studies either are retrospective in nature-
where problematic interactions are identified in the past, or
are formulated around a rule based model which does not
include the stochastic nature of ground operations. Ground
surveillance data, however, can be better leveraged to predict
hot spots which changes in time and space dynamically, based
on ground operations changing with time.

In this study, we extend ICAO’s definition of hot spot
to include areas on the Changi aerodrome taxiway, where
multiple aircraft come in close vicinity as this situation might
potentially lead to conflicts, if not resolved by ATCOs. Unlike
the currently defined hot spots at airports, which are generic
and static for all aircraft present at the airport, hot spots in this
study are dynamic as these appear and fade in time and space

based on aircraft trajectory interactions, and therefore, must
attract heightened attention by pilots and ATCOs. Moreover,
for the purpose of this study, we use the term ’predict’ hot
spots hereafter, to specifically mean identifying hot spots in
a given look-ahead time. These hot spots are highlighted
based on conflict coefficient or hotness values of intersections
which is evaluated probabilistically based on planned aircraft
movements between runways and gates.

III. PROBLEM FORMULATION

In Fig. 3, we illustrate the proposed framework for pre-
dicting dynamic hot spots at airside taxiways. The frame-
work consists of spatial and temporal sub-components, which
represent the spatial-temporal movements of aircraft on the
ground. Blue box in the upper left corner illustrate the spatial
sub-component. We take the airside structure and model it
as a network consisting of links and nodes. After analysing
the network for nodes connecting multiple links, we identify
intersections or junctions on airport taxiways, where ground
traffic merges. These intersections are the potential hot spots.

On the other hand, green box in the upper right corner
represents the temporal sub-component. We first categorize all
the observed trajectories based on the origin and destination



(runways and gates in airside context) pairs they share. Then,
for all the aircraft corresponding to each trajectory category,
we identify the possible subset of intersections visited in
the past. We then compute the travel time distribution to
each intersection for all the trajectory categories, from their
respective origin points. In other words, aircraft journeys to
all the potential hot spots are statistically learnt in time.

Using both the components learnt above, we preserve the
knowledge of intersection usage using probabilistic kernel den-
sity estimates. After learning the spatial temporal information,
which interact to give rise to the hot spots, the learnt spatial
temporal model is employed on a day’s scheduled ground
operation plan. Based on a sliding window algorithm, we
compute the probability of concurrent presence of multiple
aircraft at an intersection in a given time frame. This is
translated mathematically into a conflict coefficient or hotness
value for each intersection that represents how busy or hot
an intersection will become through the course of planned
operations. This is done for all flights in a time window to
generate a heat map that dynamically updates as ground traffic
merges and re-organises on the taxiway system through the
day.

IV. METHODOLOGY

The detailed step-by-step procedure to predict dynamic hot
spots at (Changi) airside is described in this section. Refer Fig.
4 to view the methodological flowchart. The input to the model
are infrastructural and operations data- these are discussed in
IV-A. Next, in the processing stage (refer section IV-B to IV-I),
input data are used to get the spatial and temporal intersection
usage, probable aircraft conflicts and this finally leads to the
prediction of dynamic hot spots as output (refer section IV-J
to IV-M) for scheduled ground operations.

A. Data

Following data is input to the model used to compute
dynamic hot spots.

1) Airside Infrastructure: An airport airside modelled as a
network, is composed of nodes which are connected through
links. Node description- in the form of co-ordinates & link
information- in the form of arcs joining nodes and direction of
these arcs (clockwise or counter-clockwise) is used to generate
network graph later.

2) A-SMGCS Operations: In this study, 4 month (Oct-
2017 to Jan-2018; 121 days) A-SMGCS data, detailing Changi
airside operations, has been used.

Directly available information:
1) Date
2) Flight call sign and type of aircraft
3) Time stamp (captured data is updated every second)
4) Location Stamp (Latitude and Longitude)
5) Assigned gate or stand
6) Mean flight level or altitude
Inferred information:
1) Whether the aircraft serves arrival or departure flight

inferred from Source/Destination airport

B. Data Cleaning and Pre-processing
As the aim of the study is to predict hot spots on taxiways,

following data was filtered out:
1) En-route/In-the-air trajectories: Data points above the

airport elevation level, were excluded.
2) Ground vehicle trajectories: Unlike aircraft, vehicle tra-

jectory itinerary (source-destination) is not mentioned in
flight plan. To simplify the analyses therefore, ground
vehicles are excluded from the analyses.

3) Incomplete ground trajectories: Not every trajectory in-
formation is complete. After initial observations, aircraft
trajectories which have less points (fewer than 10) are
excluded from further analysis. This, also ensures ease
of determining magnetic orientation of runway (QFU;
refer IV-G) later.

The 121 days’ pre-processed ground data contains 62.6 million
rows, detailing the location and time stamps of aircraft trajec-
tories along with flight schedule information. This information
corresponds to more than 110,000 unique aircraft trajectories.
On an average, 900-1000 flights land at Changi airport every
day.

C. Generate Airside Graph
Airside infrastructure data (refer IV-A1) is used to generate

airside graph. This graph (refer Fig. 5) is further employed
to analyze aircraft operational trajectories on the fixed airside
layout. In other words, the underlying graph structure helps to
explain the interactions between airport network and aircraft
operations, by describing the physical constraints to airside
movements.

Fig. 5. Changi airside structure which, modelled as a network, is composed
of nodes which are connected through taxiway and runway links.

D. Identify Infrastructural Intersections
Any (airside) network contains intersection (or junction)

nodes which may be accessed from multiple directions by



aircraft maneuvering in the airside. These nodes represent
crossing taxiways. Fig. 6 represents all the 394 nodes present
at Changi airside taxiway. To identify intersection nodes,
taxiway network nodes that have 3 (T-junction) or 4 degrees
(4-way junction) are identified. Degrees refer to the number
of connecting links.

Fig. 6. Intersection nodes existing at Changi taxiway network

An (airside) intersection, in this study for monitoring pur-
poses, is defined to be an area consisting of multiple intersec-
tion nodes. Since clustering algorithms are generally heuristic
in nature [22] and are often polynomial in time, Agglom-
erative clustering [23] is applied to group the intersection
nodes into intersections (bigger areas), which are potential
hot spots. These intersections, which may experience conflicts
when visited concurrently by multiple aircraft, are the points
of interest. Fig. 7 represents 14 intersections identified, for
monitoring purposes, at Changi airport taxiway network.

Fig. 7. Intersections identified at Changi taxiway network: potential hot spots.
Each colored box represent an intersection.

E. Extract Aircraft Trajectories
The pre-processed A-SMGCS operations data contains mul-

tiple aircraft movements (or trajectories) with many aircraft,

serving both arrival and departure flights, and frequenting the
airport on multiple days, over a period of 4 months. The
data is therefore decomposed into unique aircraft trajectories-
each trajectory representing an aircraft serving an arrival or
departure flight, at a time, in Changi airport.

F. Determine Flight Type

Each aircraft- represented by a trajectory- either serves an
arrival or departure flight. Therefore flight type information
refers to ascertaining if a flight is an arrival flight or a departure
flight. This information can be inferred from operations data
(refer IV-A2).

G. Identify QFU and Gate (Q-G) Pair

On airside, an arrival trajectory originates from runway and
terminates in gate at apron. On the other hand, a departure
trajectory originates from gate at apron and terminates in
runway. Thus, every trajectory can be categorized by its QFU-
Gate (Q-G) pair. Gate information is given in A-SMGCS data
(refer IV-A). However, runway-in-use (QFU) information is
not available directly in the data. Therefore QFU is derived
from the initial (for arrivals) or final (for departures) location
stamps of aircraft trajectory, following the below procedure.

QFU (magnetic orientation of runway) essentially refers
to 2 things- runway and it’s magnetic orientation in active
usage. To determine the runway used, proximity of the tra-
jectory location stamp points to each runway is checked.
The closest runway is assigned to the trajectory. Further, as
runway configuration changes, during the day, may alter the
ground journeys between the same runway and gate, another
parameter, QFU should be learnt for each aircraft by observing
direction progression from the first few (10) data points for
arrival flights and the last few (10) data points for departure
flights. Although 2 points would have sufficed to compute
aircraft movement direction vector, the lower limit of 10 is
set to account for any noise in the data set.

H. Extract Intersections Visited

Each aircraft visits a subset of 14 intersections (identified
in subsection IV-D), during its’ movement between gate and
QFU. For each historical aircraft trajectory, intersections vis-
ited are observed in operations and this information is saved.

I. Intersection Shared by a Q-G pair

Each aircraft, now characterized by a unique Q-G pair, may
only visit a subset of all available intersections. Moreover,
a variety of route options exist between a Q-G pair, and
depending on the opted route, intersections visited may vary
even for a unique Q-G pair. Moreover, depending on flight type
(arrival or departure), order in which intersections are visited
between a Q-G pair will differ and this impacts the travel time
to the intersections. Thus, the set of all intersections that have
been visited for a Q-G pair by a flight type, is extracted by
observing past flight trajectories in the 4 month operations
(A-SMGCS) data.



J. Empirical Utilization (spatial) of intersections

It can be observed that for every QFU-Gate-Flight type
combination (Q-G-F) identified in last sub-section (IV-I), not
all intersections corresponding to a Q-G-F are frequented
equally (i.e. with equal probability). This implies that some
routes between a Q-G pair are preferred over others. Thus,
given a Q-G-F, utilization probability of an intersection- Pi is
computed using equation 1.

Pi =
ni∑

i∈IQGF

ni (1)

Where,
• ni represents number of times intersection i is visited.
• IQGF represents set of all intersections observed for a

Q-G-F.

K. Distribution of Travel Time to Intersections

Based on past journeys, time taken by a Q-G-F combi-
nation to each intersection can be statistically learnt. This
statistical information can then be stored by means of fitting
kernel density estimate (KDE) to all the empirical travel time
observations [24], [25]. This shall be used for computing
conflict probability at an intersection later. Fig. 8 shows KDE
fitted to empirical observations of travel time to intersection 5
(representative) between different Q-G pairs.

L. Import Flight Schedule with a Sliding Time Window

To compute hotness arising due to aircraft intersections at
the taxiways, we import a flight schedule and run a sliding
time window algorithm to obtain a set of departure and arrival
flights as input to the dynamic hot spot model. The sliding
window is 10 minutes long which includes the past 30 minute
traffic history to compute intersection hotness. The window
shifts by 30 minutes in time after one computation cycle.
In other words, starting at 10 AM, the sliding window shall
predict hot spots until 10:10 AM, considering traffic that is
active since 9:30 AM and slides to 10:30 AM in the next
computation cycle.

M. Predict Dynamic Hot Spots

1) Spatial conflict: For a conflict to occur, two (or more)
aircraft must come at an intersection together. Spatial conflict
(Cs,i) between two flights a and b, at an intersection i, then
can be computed as follows.

Cs,i = Pi(α ∩ β) (2)

Where,
• α is the event when flight a arrives at intersection i.
• β is the event when flight b arrives at intersection i.
• i is a common intersection between Q-G-F that flights a

and b correspond to respectively.
Further, it is reasonable to assume that events α and β are

conditionally independent, i.e. flight routes are independent
and in absence of any explicit hold orders from ATCOs, flights

may arrive at an intersection at their usual times (statistical
observations). Therefore equation 2, can be simplified as
follows

Cs,i = Pi(α) ∗ Pi(β) (3)

Spatial conflict, in of itself, is not sufficient for a collision to
occur. If flights arrive at an intersection at different time points,
then no collision may take place. Hence, for a ground collision,
flights must also arrive at the same intersection concurrently.
Thus, in the following text, we compute temporal conflict.

2) Temporal conflict: The learnt statistical KDEs (in sub-
section IV-K) can be used to compute temporal conflict
probability- the overlapping area between KDEs (representing
active Q-G-F) drawn at their respective start times in a given
time frame. Temporal conflict (Ct) between two flights a and
b, at an intersection i, then can be computed as follows.

Ct,i = ϕi(a, b) =
∫ te
ts
min(f(t), g(t)) dt (4)

Where,

• ϕi(a, b) refers to common area between KDEs corre-
sponding to flights a and b.

• f(t) represents KDE corresponding to flight a.
• g(t) represents KDE corresponding to flights b.
• ts represents start time of overlap.
• te represents end time of overlap.

Fig. 9. Overlap area between 2 KDEs shown by hatched region: blue curve
denotes travel time distribution (KDE) from runway 20R to intersection
5 (while going towards gate 601) and orange curve denotes travel time
distribution (KDE) from runway 02L to intersection 5 (while going towards
gate D42).

In other words, Ct,i is the common area between Gaussian
kernel density curves corresponding to flights’ travel time to
a particular intersection. For instance, in Fig. 9, overlap area
common between the curves at intersection 5 is 0.11. In other
words, if both the arriving aircraft start towards their respective
destination gates at the same time, then there is an 11 per cent
chance of them temporally conflicting at intersection 5.



(a) Runway-20R & Gate-601 (b) Runway-02L & Gate-601 (c) Runway-02L & Gate-401

(d) Runway-02L & Gate-C30 (e) Runway-02C & Gate-C36 (f) Runway-20R & Gate-D40

(g) Runway-02L & Gate-D42 (h) Runway-02C & Gate-C20 (i) Runway-02L & Gate-E7

Fig. 8. Distribution of travel time of an arrival flight to intersection 5, for different origin and destination pairs. The blue curves are Gaussian Kernel Density
Estimates fitted to observed travel time frequencies (to intersection 5) depicted by blue histograms.

3) Hot Spot score: Hot spot score, Hi is a measure of
potential conflicts (both spatial and temporal) associated with
intersection i. The hotter the intersection depicted, the higher
is its conflict potential. It is computed for all flights f active
in the sliding time frame (refer IV-L).

Hi = Cs,i ∗ Ct,i

∀i ∈ I (5)

By equations 3, 4 and 5

Hi =
∑
a∈f

∑
b∈f

[Pi(α) ∗ Pi(β)] ∗ ϕi(a, b)

∀i ∈ I, a 6= b
(6)

Where,
• I represents total number of intersections.
The above model is run for a day’s flight schedule which

consists of information about origin, destination and start

time of different flights. This gives probability of conflicts
at intersections whose conflict potential or hotness increases
when multiple flights are expected to cross the intersection at
the same time.

V. RESULTS AND OUTLOOK

As the time (window) progresses through the day, hot spots
turn active and dormant. The more active intersections are
shown as brighter red regions, while the dormant ones are
depicted in pale yellow color (refer Fig. 10 and Fig. 11). In
Fig. 10, hot spots predicted for ground traffic between 5 AM
to 9:30 AM, are depicted on the airport diagram in 30 minute
intervals. The color bar on the right of every sub-plot depicts
numerical hotness values corresponding to the color shown on
the aerodrome diagram on a scale of 0 to 7. It can be observed
that hot spots gradually become active and at 7:30 AM the
hotness intensity piques up across the taxiway network. The
hotness then gradually dies down.



(a) 5:00 AM (b) 5:30 AM (c) 6:00 AM (d) 6:30 AM (e) 7:00 AM

(f) 7:30 AM (g) 8:00 AM (h) 8:30 AM (i) 9:00 AM (j) 9:30 AM

Fig. 10. Hot spot chart for Changi airport ground traffic from 05:00 AM to 09:30 AM on 15-Dec-2017

(a) 10:00 AM (b) 10:30 AM (c) 11:00 AM (d) 11:30 AM (e) 12:00 PM

(f) 12:30 PM (g) 1:00 PM (h) 1:30 PM (i) 2:00 PM (j) 2:30 PM

Fig. 11. Hot spot chart for Changi airport ground traffic from 10:00 AM to 02:30 PM on 15-Dec-2017

In Fig. 11, hot spots predicted for ground traffic between
10 AM to 2:30 PM, are depicted on the airport diagram in 30
minute intervals. The color bar on the right of every sub-plot
depicts numerical hotness values corresponding to the color
shown on the aerodrome diagram on a scale of 0 to 14. It can

be observed that hot spots are very active at 10 AM and 10:30
AM. The relative hotness then gradually dies down.

It can be clearly observed that hot spots change dynamically
throughout the day. Hot spots, with lower hotness values, are
observed in the early morning hours, (even) when Changi



airport witnesses lots of traffic. This shows that it is certainly
possible to safely manage huge traffic flows. Around 10 AM,
hotness intensity again piques up. It is worth noting that
hot spots around runway-taxiway intersections are generally
brighter and often more active than those father away from
the runways. This can be attributed to the fact that taxiway
intersections closer to runway exits (and entry points) serve
greater number of aircraft. As these areas are busier, they turn
hot more often.

These results, which are based on travel time approximation
by Gaussian distributions, were shown to a Ground Movement
Air Traffic Controller. In his subjective opinion, highlighted
hot spots make sense and leads to better understanding of taxi-
way movements and increased situational awareness. However,
we plan to perform an in-depth human-in-the-loop validation
of the dynamic hot spot model by ATCOs in 360 degree tower
simulator. Future research shall incorporate ground vehicle
movements in the analysis as well to make the model more
nuanced and realistic. It will be interesting to see emergent
hot spot patterns in Changi airport.
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