, Coronavirus Travel Restrictions, Across the Globe, New York Times, 2020.

. Worldatlas, Which countries are in mandatory lockdown due to COVID-19?, 2020.

, Global Level 4 Health Advisory -Do Not Travel, 2020.

, Bureau of Transportation Statistics, About BTS, 2018.

S. Bratu and C. Barnhart, An Analysis of Passenger Delays Using Flight Operations and Passenger Booking Data, Air Traffic Control Quarterly, vol.13, issue.1, pp.1-27, 2005.

S. Bratu and C. Barnhart, Flight Operations Recovery: New Approaches Considering Passenger Recovery, Journal of Scheduling, vol.9, issue.3, pp.279-298, 2006.

D. Wang, D. L. Sherry, and D. G. Donohue, Passenger Trip Time Metric for Air Transportation, The 2nd International Conference on Research in Air Transportation, 2006.

D. Wang, Methods for Analysis of Passenger Trip Performance in a Complex Networked Transportation System, 2007.

, NextGen Integration, and Implementation Office, 2009.

M. Darecki, C. Edelstenne, E. Fernandez, P. Hartman, J. Herteman et al., Flightpath 2050: Europe's Vision for Aviation ; Maintaining Global Leadership and Serving Society's Needs, European Commission, p.930887434, 2011.

Y. O. Gawdiak, D. , and T. , NextGen Metrics for the Joint Planning and Development Office, 2011.

A. Cook, G. Tanner, S. Cristóbal, and M. Zanin, Passenger-Oriented Enhanced Metrics, 2012.

I. Laplace, A. Marzuoli, and E. Feron, META-CDM: Multimodal, Efficient Transportation in Airports and Collaborative Decision Making, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01016793

S. H. Kim, A. Marzuoli, J. Clarke, D. Delahaye, and E. Feron, Airport Gate Scheduling for Passengers, Aircraft, and Operation, Tenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2013), 2013.
URL : https://hal.archives-ouvertes.fr/hal-01293553

L. Dray, A. Marzuoli, and A. Evans, Air Transportation and Multimodal, Collaborative Decision Making during Adverse Events, Eleventh USA/Europe Air Traffic Management Research and Development Seminar (ATM2015), 2015.
URL : https://hal.archives-ouvertes.fr/hal-02095937

, The passenger IT trends survey, 2014.

H. Nikoue, A. Marzuoli, J. Clarke, E. Feron, and J. Peters, Passenger Flow Predictions at Sydney International Airport: A Data-Driven Queuing Approach, 2015.

J. Van-den-heuvel, D. Ton, and K. Hermansen, Advances in Measuring Pedestrians at Dutch Train Stations Using Bluetooth, Wifi and Infrared Technology, Traffic and Granular Flow'15, pp.11-18, 2016.

W. Huang, Y. Lin, B. Lin, and L. Zhao, Modeling and Predicting the Occupancy in a China Hub Airport Terminal Using Wi-Fi Data, Energy & Buildings, vol.203, p.19, 2019.

A. Marzuoli, E. Boidot, E. Feron, and A. Srivastava, Implementing and Validating Air Passenger-Centric Metrics Using Mobile Phone Data, Journal of Aerospace Information Systems, vol.16, issue.4, pp.132-147, 2019.

A. Marzuoli, P. Monmousseau, and E. Feron, Passenger-Centric Metrics for Air Transportation Leveraging Mobile Phone and Twitter Data, Data-Driven Intelligent Transportation Workshop -IEEE International Conference on Data Mining, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02078088

P. García-albertos, O. G. Cantú-ros, R. Herranz, C. , and C. , Understanding Door-to-Door Travel Times from Opportunistically Collected Mobile Phone Records, SESAR Innovation Days 2017, 2017.

. Safegraph, SafeGraph COVID-19 data consortium, 2020.

. Statista, Monthly Active Twitter Users in the United States, 2018.

L. Palen, K. Starbird, S. Vieweg, and A. Hughes, Twitter-Based Information Distribution during the 2009 Red River Valley Flood Threat, Bulletin of the American Society for Information Science and Technology, vol.36, issue.5, pp.13-17, 2010.

S. Vieweg, A. L. Hughes, K. Starbird, and L. Palen, Microblogging during Two Natural Hazards Events: What Twitter May Contribute to Situational Awareness, p.10, 2010.

K. Kireyev, L. Palen, A. , and K. M. , Applications of Topics Models to Analysis of Disaster-Related Twitter Data, p.4, 2009.

T. Terpstra and R. Stronkman, Towards a Realtime Twitter Analysis during Crises for Operational Crisis Management, p.10, 2012.

J. O. Breen, Practical text mining and statistical analysis for non-structured text data applications, vol.133, 2012.

Y. Wan and Q. Gao, An Ensemble Sentiment Classification System of Twitter Data for Airline Services Analysis, 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp.1318-1325, 2015.

P. Monmousseau, A. Marzuoli, E. Feron, and D. Delahaye, Predicting and Analyzing US Air Traffic Delays Using Passenger-Centric Data-Sources, Thirteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2019), 2019.
URL : https://hal.archives-ouvertes.fr/hal-02178441

P. Monmousseau, A. Marzuoli, E. Feron, and D. Delahaye, Passengers on Social Media: A Real-Time Estimator of the State of the US Air Transportation System, ENRI Int. Workshop on ATM/CNS (EIWAC 2019), 2019.
URL : https://hal.archives-ouvertes.fr/hal-02364816

, United States Customs and Border Protection, 2020.

P. Monmousseau, A. Marzuoli, C. Bosson, E. Feron, and D. Delahaye, Doorway to the United States: An Exploration of Customs and Border Protection Data, 38th Digital Avionics Systems Conference, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02386102

A. Pruyn and A. Smidts, Effects of Waiting on the Satisfaction with the Service: Beyond Objective Time Measures, International Journal of Research in Marketing, vol.15, issue.4, pp.8-9, 1998.

K. E. Watkins, B. Ferris, A. Borning, G. S. Rutherford, L. et al., Where Is My Bus? Impact of Mobile Real-Time Information on the Perceived and Actual Wait Time of Transit Riders, Transportation Research Part A: Policy and Practice, vol.45, issue.8, pp.839-848, 2011.

, Traffic Data for U.S Airlines and Foreign Airlines U.S. Flights, p.2020, 2018.