Q. Models and . Qfu,

, MAE (s) RMSE (s) MAE (s) RMSE (s) MAE (s) RMSE (s)

Q. Models and . Qfu,

, Total MAE (s) RMSE (s) MAE (s) RMSE (s) MAE (s) RMSE (s) MAE (s) RMSE (s)

Z. Wang, M. Liang, and D. Delahaye, Automated data-driven prediction on aircraft estimated time of arrival, Sesar Innovations Days, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01944608

G. Enea and M. Porretta, A comparison of 4D-trajectory operations envisioned for nextgen and sesar, some preliminary 370 findings, pp.23-28, 2012.

, Dart -data-driven aircraft trajectory prediction research

M. Hamed, D. Gianazza, M. Serrurier, and N. Durand, Statistical prediction of aircraft trajectory: regression methods vs point-mass model, ATM Seminar, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00911709

W. Kun and P. Wei, A 4-d trajectory prediction model based on radar data, Control Conference, 2008. CCC 2008. 375 27th Chinese, pp.591-594, 2008.

A. De-leege, M. Van-paassen, and M. Mulder, A machine learning approach to trajectory prediction, AIAA Guidance, Navigation, and Control (GNC) Conference, p.4782, 2013.

S. Hong and K. Lee, Trajectory prediction for vectored area navigation arrivals, Journal of Aerospace Information Systems, vol.12, issue.7, pp.490-502, 2015.

K. Tastambekov, S. Puechmorel, D. Delahaye, and C. Rabut, Aircraft trajectory forecasting using local functional regression in sobolev space, Transportation research part C: emerging technologies, vol.39, pp.1-22, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00924360

Y. , L. Fablec, and J. Alliot, Using neural networks to predict aircraft trajectories, IC-AI, pp.524-529, 1999.

R. Alligier, D. Gianazza, and N. Durand, Machine learning applied to airspeed prediction during climb, ATM seminar 2015, 11th USA/EUROPE Air Traffic Management R&D Seminar, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01168664

, Machine learning and mass estimation methods for ground-based aircraft climb prediction, IEEE Transactions on Intelligent Transportation Systems, vol.11, issue.6, pp.3138-3149, 2015.

Z. Wang, M. Liang, and D. Delahaye, Short-term 4d trajectory prediction using machine learning methods, SID 2017, 7th SESAR Innovation Days, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01652041

M. G. Karlaftis and E. I. Vlahogianni, Statistical methods versus neural networks in transportation research: Differences, 390 similarities and some insights, Transportation Research Part C: Emerging Technologies, vol.19, issue.3, pp.387-399, 2011.

, Report on national civil aviation flight operation efficiency in 2017 (chinese), Tech. Rep, 2018.

, Electronic aeronautical information publication of people's republic of china, C. Aeronautical Information Center, 2017.

A. E. Hoerl and R. W. Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, vol.12, issue.1, pp.55-67, 1970.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.

F. Chollet, Keras: Deep learning library for theano and tensorflow, vol.7, p.1, 2015.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang et al., Automatic differentiation in pytorch, 2017.

N. S. Altman, An introduction to kernel and nearest-neighbor nonparametric regression, The American Statistician, vol.46, issue.3, pp.175-185, 1992.

J. H. Friedman, Greedy function approximation: a gradient boosting machine, p.405, 2001.

K. Rashmi and R. Gilad-bachrach, Dart: Dropouts meet multiple additive regression trees, International Conference on Artificial Intelligence and Statistics, pp.489-497, 2015.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen et al., Lightgbm: A highly efficient gradient boosting decision tree, Advances in Neural Information Processing Systems, pp.3146-3154, 2017.

L. Breiman, Random forests, Machine learning, vol.45, issue.1, pp.5-32, 2001.

J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, Springer series in statistics, vol.1, 2001.

P. Geurts, D. Ernst, and L. Wehenkel, Extremely randomized trees, Machine learning, vol.63, issue.1, pp.3-42, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00341932

J. Bergstra and Y. Bengio, Random search for hyper-parameter optimization, Journal of Machine Learning Research, vol.13, pp.281-305, 2012.