J. J. Thomas and K. A. Cook, A visual analytics agenda, IEEE Comput. Graph. Appl, vol.26, issue.1, pp.10-13, 2006.


J. Heer and S. Kandel, Interactive analysis of big data, XRDS, vol.19, issue.1, pp.50-54, 2012.

S. Amari, Information Geometry and Its Applications, 2016.

, Differential-Geometrical Methods in Statistics, 1985.

C. Hurter, S. Puechmorel, F. Nicol, and A. Telea, Functional decomposition for bundled simplification of trail sets, IEEE Transactions on Visualization and Computer Graphics, vol.24, issue.1, pp.500-510, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01587221

H. Mark and J. Workman, Statistics in Spectroscopy, 2003.

R. Prado and M. West, Time Series: Modeling, Computation, and Inference, 2010.

O. W. Winkler, Interpreting Economic and Social Data: A Foundation of Descriptive Statistics, ser. Mathematics and Statistics, 2009.

J. Ramsay and B. Silverman, Functional Data Analysis, ser, Springer Series in Statistics, 2005.

W. Saeys, B. De-ketelaere, and P. Darius, Potential applications of functional data analysis in chemometrics, Journal of Chemometrics, vol.22, issue.5, pp.335-344, 2008.

J. Jacques and C. Preda, Functional data clustering: A survey, Advances in Data Analysis and Classification, vol.8, pp.231-255, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00771030

X. Olive and P. Bieber, Quantitative assessments of runway excursion precursors using mode s data, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02078299

G. Jarry, D. Delahaye, F. Nicol, and E. Féron, Aircraft atypical approach detection using functional principal component analysis, SESAR Innovations Days, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01944595

G. Jarry, D. Delahaye, F. Nicol, and E. Feron, Aircraft atypical approach detection using functional principal component analysis, Journal of Air Transport Management, vol.84, p.101787, 2020.
URL : https://hal.archives-ouvertes.fr/hal-01944595

A. Hassoumi, M. J. Lobo, G. Jarry, V. Peysakhovich, and C. Hurter, Interactive shape based brushing technique for trail sets, 2019.

N. Adrienko and G. Adrienko, Spatial generalization and aggregation of massive movement data, IEEE Transactions on Visualization and Computer Graphics, vol.17, issue.2, pp.205-219, 2011.

R. Scheepens, N. Willems, H. Van-de-wetering, and J. J. Van-wijk, Interactive visualization of multivariate trajectory data with density maps, 2011 IEEE Pacific Visualization Symposium, pp.147-154, 2011.

F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi, Trajectory pattern mining, Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD '07, pp.330-339, 2007.

P. Kalnis, N. Mamoulis, and S. Bakiras, On discovering moving clusters in spatio-temporal data, Advances in Spatial and Temporal Databases, pp.364-381, 2005.

D. Delahaye, S. Puechmorel, S. Alam, and E. Féron, Trajectory mathematical distance applied to airspace major flows extraction, EIWAC 2017 The 5th ENRI International Workshop on ATM/CNS, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01598864

G. Jarry, N. Couellan, and D. Delahaye, On the use of generative adversarial networks for aircraft trajectory generation and atypical approach detection, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02267170

J. D. Cryer, Time Series Analysis, 1986.

G. Andrienko, N. Andrienko, P. Bak, D. Keim, S. Kisilevich et al., A conceptual framework and taxonomy of techniques for analyzing movement, Journal of Visual Languages & Computing, vol.22, issue.3, pp.213-232, 2011.

G. Andrienko and N. Andrienko, A general framework for using aggregation in visual exploration of movement data, The Cartographic Journal, vol.47, issue.1, pp.22-40, 2010.

B. Bach, P. Dragicevic, D. Archambault, C. Hurter, and S. Carpendale, A descriptive framework for temporal data visualizations based on generalized space-time cubes, Computer Graphics Forum, vol.36, issue.6, pp.36-61, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01303506

H. Hochheiser and B. Shneiderman, Interactive exploration of time series data, Proceedings of the 4th International Conference on Discovery Science, ser. DS '01, pp.441-446, 2001.

P. Buono, A. Aris, C. Plaisant, A. Khella, and B. Shneiderman, Interactive pattern search in time series, Visualization and Data Analysis, 2005.

R. Scheepens, C. Hurter, H. Van-de-wetering, and J. J. Van-wijk, Visualization, selection, and analysis of traffic flows, IEEE Transactions on Visualization and Computer Graphics, vol.22, issue.1, pp.379-388, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01206660

C. Hurter, Image-based visualization: Interactive multidimensional data exploration, Synthesis Lectures on Visualization, vol.3, issue.2, pp.1-127, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01280955

C. Hurter, S. Conversy, D. Gianazza, and A. Telea, Interactive imagebased information visualization for aircraft trajectory analysis, Transportation Research Part C: Emerging Technologies, vol.47, pp.207-227, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00987451

C. Hurter, B. Tissoires, and S. Conversy, Fromdady: Spreading aircraft trajectories across views to support iterative queries, IEEE Transactions on Visualization and Computer Graphics, vol.15, issue.6, pp.1017-1024, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01022260

C. Hurter, N. H. Riche, S. M. Drucker, M. Cordeil, R. Alligier et al., Fiberclay: Sculpting three dimensional trajectories to reveal structural insights, IEEE Transactions on Visualization and Computer Graphics, vol.25, issue.1, pp.704-714, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01857930

R. A. Adams and J. J. Fournier, Sobolev spaces, vol.140, 2003.

H. Stark and J. Woods, Probability, random processes, and estimation theory for engineers, 1986.

G. Mclachlan and T. Krishnan, The EM algorithm and extensions, vol.382, 2007.

A. Hinneburg and D. A. Keim, Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering, 1999.

P. Bickel, P. Diggle, S. Fienberg, U. Gather, I. Olkin et al., Springer series in statistics, 2009.

R. J. Campello, D. Moulavi, and J. Sander, Density-based clustering based on hierarchical density estimates, Pacific-Asia conference on knowledge discovery and data mining, pp.160-172, 2013.